Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet Immunol Immunopathol ; 268: 110705, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157760

RESUMEN

Receptor activator of nuclear factor Kappa-B Ligand (RANKL) is a member of the tumor necrosis factor ligand (TNF) family involved in immune responses and immunomodulation. Expressed in various cells types around the body, RANKL plays a crucial role in bone remodeling and development of the thymus, lymph nodes and mammary glands. Research in other species demonstrates that RANKL is required for the development of microfold cells (M cells) in the gut, however limited information specific to cattle is available. Cloning and expression of bovine RANKL (BoRANKL) was carried out and bioactivity of the protein was demonstrated in the induction of osteoclast differentiation from both bovine and ovine bone marrow cells. The effects of BoRANKL on particle uptake in bovine enteroids was also assessed. The production of cross-reactive bovine RANKL protein will enable further investigations into cell differentiation using the available ruminant organoid systems, and their role in investigating host-pathogen interactions in cattle and sheep.


Asunto(s)
FN-kappa B , Osteoclastos , Bovinos , Animales , Ovinos , FN-kappa B/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptor Activador del Factor Nuclear kappa-B/farmacología , Osteoclastos/metabolismo , Ligandos , Diferenciación Celular , Ligando RANK/metabolismo , Ligando RANK/farmacología
2.
Vet Rec ; 191(1): e1528, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35338777

RESUMEN

The development of three-dimensional cell culture systems representative of tissues from animals of veterinary interest is accelerating research that seeks to address specific questions tied to animal health. In terms of their relevance and complexity, these in vitro models can be seen as a midpoint between the more reductionist single-cell culture systems and complex live animals. Organoids in particular represent a significant development due to their organised multicellular structure that more closely represents in vivo tissues than any other cell culture technology previously developed. In this review, we provide an overview of the different three-dimensional cell culture systems available to veterinary researchers and give examples of their application in contexts relating to animal health.


Asunto(s)
Técnicas de Cultivo de Célula , Organoides , Animales , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/veterinaria
3.
Front Cell Infect Microbiol ; 11: 733811, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568096

RESUMEN

Gastrointestinal (GI) infections in sheep have significant implications for animal health, welfare and productivity, as well as being a source of zoonotic pathogens. Interactions between pathogens and epithelial cells at the mucosal surface play a key role in determining the outcome of GI infections; however, the inaccessibility of the GI tract in vivo significantly limits the ability to study such interactions in detail. We therefore developed ovine epithelial organoids representing physiologically important gastric and intestinal sites of infection, specifically the abomasum (analogous to the stomach in monogastrics) and ileum. We show that both abomasal and ileal organoids form self-organising three-dimensional structures with a single epithelial layer and a central lumen that are stable in culture over serial passage. We performed RNA-seq analysis on abomasal and ileal tissue from multiple animals and on organoids across multiple passages and show the transcript profile of both abomasal and ileal organoids cultured under identical conditions are reflective of the tissue from which they were derived and that the transcript profile in organoids is stable over at least five serial passages. In addition, we demonstrate that the organoids can be successfully cryopreserved and resuscitated, allowing long-term storage of organoid lines, thereby reducing the number of animals required as a source of tissue. We also report the first published observations of a helminth infecting gastric and intestinal organoids by challenge with the sheep parasitic nematode Teladorsagia circumcincta, demonstrating the utility of these organoids for pathogen co-culture experiments. Finally, the polarity in the abomasal and ileal organoids can be inverted to make the apical surface directly accessible to pathogens or their products, here shown by infection of apical-out organoids with the zoonotic enteric bacterial pathogen Salmonella enterica serovar Typhimurium. In summary, we report a simple and reliable in vitro culture system for generation and maintenance of small ruminant intestinal and gastric organoids. In line with 3Rs principals, use of such organoids will reduce and replace animals in host-pathogen research.


Asunto(s)
Intestinos , Organoides , Animales , Interacciones Huésped-Patógeno , Rumiantes , Ovinos , Estómago
4.
J Fungi (Basel) ; 5(2)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987114

RESUMEN

Traditional in vivo investigation of fungal infection and new antifungal therapies in mouse models is usually carried out using post mortem methodologies. However, biomedical imaging techniques focusing on non-invasive techniques using bioluminescent and fluorescent proteins have become valuable tools. These new techniques address ethical concerns as they allow reduction in the number of animals required to evaluate new antifungal therapies. They also allow better understanding of the growth and spread of the pathogen during infection. In this review, we concentrate on imaging technologies using different fungal reporter proteins. We discuss the advantages and limitations of these different reporters and compare the efficacy of bioluminescent and fluorescent proteins for fungal research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...