Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Med ; 30(1): 80, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858657

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that commonly results from a high-calorie diet and sedentary lifestyle, leading to insulin resistance and glucose homeostasis perturbation. Physical activity is recommended as one first-line treatment in T2DM, but it leads to contrasted results. We hypothesized that, instead of applying standard exercise protocols, the prescription of personalized exercise programs specifically designed to reverse the potential metabolic alterations in skeletal muscle could result in better results. METHODS: To test this hypothesis, we drew the metabolic signature of the fast-twitch quadriceps muscle, based on a combined unbiased NMR spectroscopy and RT-qPCR study, in several T2DM mouse models of different genetic background (129S1/SvImJ, C57Bl/6J), sex and aetiology (high-fat diet (HFD) or HFD/Streptozotocin (STZ) induction or transgenic MKR (FVB-Tg Ckm-IGF1R*K1003R)1Dlr/J) mice. Three selected mouse models with unique muscular metabolic signatures were submitted to three different swimming-based programs, designed to address each metabolic specificity. RESULTS: We found that depending on the genetic background, the sex, and the mode of T2DM induction, specific muscular adaptations occurred, including depressed glycolysis associated with elevated PDK4 expression, shift to ß-oxidation, or deregulation of amino-acid homeostasis. Interestingly, dedicated swimming-based exercises designed to restore specific metabolic alterations in muscle were found optimal in improving systemic T2DM hallmarks, including a significant reduction in insulin resistance, the improvement of glucose homeostasis, and a delay in sensorimotor function alterations. CONCLUSION: The muscle metabolism constitutes an important clue for the design of precision exercises with potential clinical implications for T2DM patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Músculo Esquelético , Condicionamiento Físico Animal , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/genética , Músculo Esquelético/metabolismo , Ratones , Masculino , Femenino , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Resistencia a la Insulina , Metaboloma , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Ratones Transgénicos , Metabolómica/métodos
2.
Front Cell Neurosci ; 17: 1242828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780204

RESUMEN

Introduction: Spinal muscular atrophy (SMA) is a fatal neurodegenerative disorder, characterized by motor neuron (MN) degeneration and severe muscular atrophy and caused by Survival of Motor Neuron (SMN) depletion. Therapies aimed at increasing SMN in patients have proven their efficiency in alleviating SMA symptoms but not for all patients. Thus, combinational therapies are warranted. Here, we investigated the involvement of NADPH oxidase 4 (NOX4) in SMA-induced spinal MN death and if the modulation of Nox4 activity could be beneficial for SMA patients. Methods: We analysed in the spinal cord of severe type SMA-like mice before and at the disease onset, the level of oxidative stress and Nox4 expression. Then, we tested the effect of Nox4 inhibition by GKT137831/Setanaxib, a drug presently in clinical development, by intrathecal injection on MN survival and motor behaviour. Finally, we tested if GKT137831/Setanaxib could act synergistically with FDA-validated SMN-upregulating treatment (nusinersen). Results: We show that NOX4 is overexpressed in SMA and its inhibition by GKT137831/Setanaxib protected spinal MN from SMA-induced degeneration. These improvements were associated with a significant increase in lifespan and motor behaviour of the mice. At the molecular level, GKT137831 activated the pro-survival AKT/CREB signaling pathway, leading to an increase in SMN expression in SMA MNs. Most importantly, we found that the per os administration of GKT137831 acted synergistically with a FDA-validated SMN-upregulating treatment. Conclusion: The pharmacological inhibition of NOX4 by GKT137831/Setanaxib is neuroprotector and could represent a complementary therapeutic strategy to fight against SMA.

3.
Neuropathol Appl Neurobiol ; 48(5): e12816, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35338505

RESUMEN

AIM: Spinal muscular atrophy (SMA) is a neuromuscular disease caused by survival of motor neuron (SMN) deficiency that induces motor neuron (MN) degeneration and severe muscular atrophy. Gene therapies that increase SMN have proven their efficacy but not for all patients. Here, we explored the unfolded protein response (UPR) status in SMA pathology and explored whether UPR modulation could be beneficial for SMA patients. METHODS: We analysed the expression and activation of key UPR proteins by RT-qPCR and by western blots in SMA patient iPSC-derived MNs and one SMA cell line in which SMN expression was re-established (rescue). We complemented this approach by using myoblast and fibroblast SMA patient cells and SMA mouse models of varying severities. Finally, we tested in vitro and in vivo the effect of IRE1α/XBP1 pathway restoration on SMN expression and subsequent neuroprotection. RESULTS: We report that the IRE1α/XBP1 branch of the unfolded protein response is disrupted in SMA, with a depletion of XBP1s irrespective of IRE1α activation pattern. The overexpression of XBP1s in SMA fibroblasts proved to transcriptionally enhance SMN expression. Importantly, rebalancing XBP1s expression in severe SMA-like mice, induced SMN expression and spinal MN protection. CONCLUSIONS: We have identified XBP1s depletion as a contributing factor in SMA pathogenesis, and the modulation of this transcription factor proves to be a plausible therapeutic avenue in the context of pharmacological interventions for patients.


Asunto(s)
Factor de Transcripción Activador 6 , Endorribonucleasas , Atrofia Muscular Espinal , Proteínas Serina-Treonina Quinasas , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 1 de Unión a la X-Box , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Ratones , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
4.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925507

RESUMEN

Physical exercise improves motor control and related cognitive abilities and reinforces neuroprotective mechanisms in the nervous system. As peripheral nerves interact with skeletal muscles at the neuromuscular junction, modifications of this bidirectional communication by physical activity are positive to preserve this synapse as it increases quantal content and resistance to fatigue, acetylcholine receptors expansion, and myocytes' fast-to-slow functional transition. Here, we provide the intermediate step between physical activity and functional and morphological changes by analyzing the molecular adaptations in the skeletal muscle of the full BDNF/TrkB downstream signaling pathway, directly involved in acetylcholine release and synapse maintenance. After 45 days of training at different intensities, the BDNF/TrkB molecular phenotype of trained muscles from male B6SJLF1/J mice undergo a fast-to-slow transition without affecting motor neuron size. We provide further knowledge to understand how exercise induces muscle molecular adaptations towards a slower phenotype, resistant to prolonged trains of stimulation or activity that can be useful as therapeutic tools.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Unión Neuromuscular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Carrera/fisiología , Natación/fisiología , Animales , Masculino , Ratones Endogámicos , Neuronas Motoras/metabolismo , Proteínas Munc18/metabolismo , Músculo Esquelético/fisiología , Factores de Crecimiento Nervioso/metabolismo , Condicionamiento Físico Animal/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Vesículas Sinápticas/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo
5.
Cell Mol Life Sci ; 77(15): 3027-3040, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31646358

RESUMEN

Nerve-induced muscle contraction regulates the BDNF/TrkB neurotrophic signalling to retrogradely modulate neurotransmission and protect the neuromuscular junctions and motoneurons. In muscles with amyotrophic lateral sclerosis, this pathway is strongly misbalanced and neuromuscular junctions are destabilized, which may directly cause the motoneuron degeneration and muscular atrophy observed in this disease. Here, we sought to demonstrate (1) that physical exercise, whose recommendation has been controversial in amyotrophic lateral sclerosis, would be a good option for its therapy, because it normalizes and improves the altered neurotrophin pathway and (2) a plausible molecular mechanism underlying its positive effect. SOD1-G93A mice were trained following either running or swimming-based protocols since the beginning of the symptomatic phase (day 70 of age) until day 115. Next, the full BDNF pathway, including receptors, downstream kinases and proteins related with neurotransmission, was characterized and motoneuron survival was analysed. The results establish that amyotrophic lateral sclerosis-induced damaging molecular changes in the BDNF/TrkB pathway are reduced, prevented or even overcompensated by precisely defined exercise protocols that modulate TrkB isoforms and neurotransmission regulatory proteins and reduce motoneuron death. Altogether, the maintenance of the BDNF/TrkB signalling and the downstream pathway, particularly after the swimming protocol, adds new molecular evidence of the benefits of physical exercise to reduce the impact of amyotrophic lateral sclerosis. These results are encouraging since they reveal an improvement even starting the therapy after the onset of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Unión Neuromuscular/metabolismo , Condicionamiento Físico Animal , Transducción de Señal , Natación , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Músculo Esquelético/metabolismo , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas SNARE/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
6.
Front Physiol ; 10: 1258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632295

RESUMEN

Spinal Muscular Atrophy (SMA), an autosomal recessive neurodegenerative disease characterized by the loss of spinal-cord motor-neurons, is caused by mutations on Survival-of-Motor Neuron (SMN)-1 gene. The expression of SMN2, a SMN1 gene copy, partially compensates for SMN1 disruption due to exon-7 excision in 90% of transcripts subsequently explaining the strong clinical heterogeneity. Several alterations in energy metabolism, like glucose intolerance and hyperlipidemia, have been reported in SMA at both systemic and cellular level, prompting questions about the potential role of energy homeostasis and/or production involvement in disease progression. In this context, we have recently reported the tolerance of mild SMA-like mice (SmnΔ7/Δ7; huSMN2 +/+) to 10 months of low-intensity running or high-intensity swimming exercise programs, respectively involving aerobic and a mix aerobic/anaerobic muscular metabolic pathways. Here, we investigated whether those exercise-induced benefits were associated with an improvement in metabolic status in mild SMA-like mice. We showed that untrained SMA-like mice exhibited a dysregulation of lipid metabolism with an enhancement of lipogenesis and adipocyte deposits when compared to control mice. Moreover, they displayed a high oxygen consumption and energy expenditure through ß-oxidation increase yet for the same levels of spontaneous activity. Interestingly, both exercises significantly improved lipid metabolism and glucose homeostasis in SMA-like mice, and enhanced oxygen consumption efficiency with the maintenance of a high oxygen consumption for higher levels of spontaneous activity. Surprisingly, more significant effects were obtained with the high-intensity swimming protocol with the maintenance of high lipid oxidation. Finally, when combining electron microscopy, respiratory chain complexes expression and enzymatic activity measurements in muscle mitochondria, we found that (1) a muscle-specific decreased in enzymatic activity of respiratory chain I, II, and IV complexes for equal amount of mitochondria and complexes expression and (2) a significant decline in mitochondrial maximal oxygen consumption, were reduced by both exercise programs. Most of the beneficial effects were obtained with the high-intensity swimming protocol. Taking together, our data support the hypothesis that active physical exercise, including high-intensity protocols, induces metabolic adaptations at both systemic and cellular levels, providing further evidence for its use in association with SMN-overexpressing therapies, in the long-term care of SMA patients.

7.
Dev Biol ; 453(1): 11-18, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31128088

RESUMEN

The two somite compartments, dorso-lateral dermomyotome and medio-ventral sclerotome are major vertebrate novelties, but little is known about their evolutionary origin. We determined that sclerotome cells in Xenopus come from lateral somitic frontier (LSF) by lineage tracing, ablation experiments and histological analysis. We identified Twist1 as marker of migrating sclerotome progenitors in two amphibians, Xenopus and axolotl. From these results, three conclusions can be drawn. First, LSF is made up of multipotent somitic cells (MSCs) since LSF gives rise to sclerotome but also to dermomytome as already shown in Xenopus. Second, the basic scheme of somite compartmentalization is conserved from cephalochordates to anamniotes since in both cases, lateral cells envelop dorsally and ventrally the ancestral myotome, suggesting that lateral MSCs should already exist in cephalochordates. Third, the transition from anamniote to amniote vertebrates is characterized by extension of the MSCs domain to the entire somite at the expense of ancestral myotome since amniote somite is a naive tissue that subdivides into sclerotome and dermomyotome. Like neural crest pluripotent cells, MSCs are at the origin of major vertebrate novelties, namely hypaxial region of the somite, dermomyotome and sclerotome compartments. Hence, change in MSCs properties and location is involved in somite evolution.


Asunto(s)
Anfibios/embriología , Linaje de la Célula , Somitos/citología , Ambystoma mexicanum/embriología , Animales , Movimiento Celular , Proteína 1 Relacionada con Twist/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
8.
Mol Neurobiol ; 56(10): 6856-6872, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30929165

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive motor weakness. It is accepted that it is caused by motoneuron degeneration leading to a decrease in muscle stimulation. However, ALS is being redefined as a distal axonopathy, in that neuromuscular junction dysfunction precedes and may even influence motoneuron loss. In this synapse, several metabotropic receptor-mediated signaling pathways converge on effector kinases that phosphorylate targets that are crucial for synaptic stability and neurotransmission quality. We have previously shown that, in physiological conditions, nerve-induced muscle contraction regulates the brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signaling to retrogradely modulate presynaptic protein kinases PKC and PKA, which are directly involved in the modulation of acetylcholine release. In ALS patients, the alteration of this signaling may significantly contribute to a motor impairment. Here, we investigate whether BDNF/TrkB signaling, the downstream PKC (cPKCßI, cPKCα, and nPKCε isoforms), and PKA (regulatory and catalytic subunits) and some SNARE/SM exocytotic machinery proteins (Munc18-1 and SNAP-25) are altered in the skeletal muscle of pre- and symptomatic SOD1-G93A mice. We found that this pathway is strongly affected in symptomatic ALS mice muscles including an unbalance between (I) BDNF and TrkB isoforms, (II) PKC isoforms and PKA subunits, and (III) Munc18-1 and SNAP-25 phosphorylation ratios. Changes in TrkB.T1 and cPKCßI are precociously observed in presymptomatic mice. Altogether, several of these molecular alterations can be partly associated with the known fast-to-slow motor unit transition during the disease process but others can be related with the initial disease pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Unión Neuromuscular/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas SNARE/metabolismo , Transducción de Señal , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Dominio Catalítico , Modelos Animales de Enfermedad , Masculino , Ratones Transgénicos , Modelos Biológicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Músculos/metabolismo , Músculos/patología , Factores de Crecimiento Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Médula Espinal/patología
9.
Dev Biol ; 442(2): 262-275, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30071218

RESUMEN

In anamniotes, somite compartimentalization in the lateral somitic domain leads simultaneously to myotome and dermomyotome formation. In the myotome, Xenopus Sox5 is co-expressed with Myod1 in the course of myogenic differentiation. Here, we studied the function of Sox5 using a Myod1-induced myogenic transcription assay in pluripotent cells of animal caps. We found that Sox5 enhances myogenic transcription of muscle markers Des, Actc1, Ckm and MyhE3. The use of chimeric transactivating or transrepressive Sox5 proteins indicates that Sox5 acts as a transrepressor and indirectly stimulates myogenic transcription except for the slow muscle-specific genes Myh7L, Myh7S, Myl2 and Tnnc1. We showed that this role is shared by Sox6, which is structurally similar to Sox5, both belonging to the SoxD subfamily of transcription factors. Moreover, Sox5 can antagonize the inhibitory function of Meox2 on myogenic differentiation. Meox2 which is a dermomyotome marker, represses myogenic transcription in Myod-induced myogenic transcription assay and in Nodal5-induced mesoderm from animal cap assay. The inhibitory function of Meox2 and the pro-myogenic function of Sox5 were confirmed during Xenopus normal development by the use of translation-blocking oligomorpholinos and dexamethasone inducible chimeric Sox5 and Meox2 proteins. We have therefore identified a new function for SoxD proteins in muscle cells, which can indirectly enhance myogenic transcription through transrepression, in addition to the previously identified function as a direct repressor of slow muscle-specific genes.


Asunto(s)
Factores de Transcripción SOXD/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Diferenciación Celular/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Músculos/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Factores de Transcripción SOXD/genética , Somitos/metabolismo , Activación Transcripcional/fisiología , Proteínas de Xenopus/genética , Xenopus laevis
10.
Sci Rep ; 8(1): 2075, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391529

RESUMEN

The hereditary neurodegenerative disorder spinal muscular atrophy (SMA) is characterized by the loss of spinal cord motor neurons and skeletal muscle atrophy. SMA is caused by mutations of the survival motor neuron (SMN) gene leading to a decrease in SMN protein levels. The SMN deficiency alters nuclear body formation and whether it can contribute to the disease remains unclear. Here we screen a series of small-molecules on SMA patient fibroblasts and identify flunarizine that accumulates SMN into Cajal bodies, the nuclear bodies important for the spliceosomal small nuclear RNA (snRNA)-ribonucleoprotein biogenesis. Using histochemistry, real-time RT-PCR and behavioural analyses in a mouse model of SMA, we show that along with the accumulation of SMN into Cajal bodies of spinal cord motor neurons, flunarizine treatment modulates the relative abundance of specific spliceosomal snRNAs in a tissue-dependent manner and can improve the synaptic connections and survival of spinal cord motor neurons. The treatment also protects skeletal muscles from cell death and atrophy, raises the neuromuscular junction maturation and prolongs life span by as much as 40 percent (p < 0.001). Our findings provide a functional link between flunarizine and SMA pathology, highlighting the potential benefits of flunarizine in a novel therapeutic perspective against neurodegenerative diseases.


Asunto(s)
Cuerpos Enrollados/efectos de los fármacos , Flunarizina/farmacología , Atrofia Muscular Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Línea Celular , Cuerpos Enrollados/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Flunarizina/uso terapéutico , Células HeLa , Humanos , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología
11.
Proc Natl Acad Sci U S A ; 115(6): E1319-E1328, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29351992

RESUMEN

Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in xenobiotic metabolism. Plexiform neurofibromas (PNFs) can transform into malignant peripheral nerve sheath tumors (MPNSTs) that are resistant to existing therapies. These tumors are primarily composed of Schwann cells. In addition to neurofibromatosis type 1 (NF1) gene inactivation, further genetic lesions are required for malignant transformation. We have quantified the mRNA expression levels of AHR and its associated genes in 38 human samples. We report that AHR and the biosynthetic enzymes of its endogenous ligand are overexpressed in human biopsies of PNFs and MPNSTs. We also detect a strong nuclear AHR staining in MPNSTs. The inhibition of AHR by siRNA or antagonists, CH-223191 and trimethoxyflavone, induces apoptosis in human MPNST cells. Since AHR dysregulation is observed in these tumors, we investigate AHR involvement in Schwann cell physiology. Hence, we studied the role of AHR in myelin structure and myelin gene regulation in Ahr-/- mice during myelin development. AHR ablation leads to locomotion defects and provokes thinner myelin sheaths around the axons. We observe a dysregulation of myelin gene expression and myelin developmental markers in Ahr-/- mice. Interestingly, AHR does not directly bind to myelin gene promoters. The inhibition of AHR in vitro and in vivo increased ß-catenin levels and stimulated the binding of ß-catenin on myelin gene promoters. Taken together, our findings reveal an endogenous role of AHR in peripheral myelination and in peripheral nerve sheath tumors. Finally, we suggest a potential therapeutic approach by targeting AHR in nerve tumors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Vaina de Mielina/patología , Neoplasias de la Vaina del Nervio/patología , Receptores de Hidrocarburo de Aril/fisiología , Animales , Apoptosis , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/metabolismo , Transducción de Señal
12.
Front Mol Neurosci ; 10: 332, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104532

RESUMEN

Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS)-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice. Using physiological tests and a biophysics approach based on nuclear magnetic resonance (NMR), we unexpectedly found that SOD1(G93A) ALS mice suffered from severe glucose intolerance, which was counteracted by high intensity swimming but not moderate intensity running exercise. Furthermore, swimming exercise restored the highly ALS-sensitive tibialis muscle through an autophagy-linked mechanism involving the expression of key glucose transporters and metabolic enzymes, including GLUT4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, GLUT4 and GAPDH expression defects were also found in muscles from ALS patients. Moreover, we report that swimming exercise induced a triglyceride accumulation in ALS tibialis, likely resulting from an increase in the expression levels of lipid transporters and biosynthesis enzymes, notably DGAT1 and related proteins. All these data provide the first molecular basis for the differential effects of specific exercise type and intensity in ALS, calling for the use of physical exercise as an appropriate intervention to alleviate symptoms in this debilitating disease.

13.
Antioxid Redox Signal ; 27(3): 168-183, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27788593

RESUMEN

AIMS: Paraquat (PQT), a redox-active herbicide, is a free radical-producing molecule, causing damage particularly to the nervous system; thus, it is employed as an animal model for Parkinson's disease. However, its impact on peripheral nerve demyelination is still unknown. Our aim is to decipher the influence of PQT-induced reactive oxygen species (ROS) production on peripheral myelin. RESULTS: We report that PQT provokes severe locomotor and sensory defects in mice. PQT elicited an oxidative stress in the nerve, resulting in an increase of lipid peroxidation and protein carbonylation, despite the induction of nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent antioxidant defenses. We observed a dramatic disorganization of myelin sheaths in the sciatic nerves, dysregulation of myelin gene expression, and aggregation of myelin proteins, a hallmark of demyelination. PQT altered myelin gene expression via liver X receptor (LXR) signaling, a negative regulator of peripheral myelin gene expression through its dialog with the Wnt/ß-catenin pathway. PQT prevented ß-catenin binding on myelin gene promoters, resulting in the inhibition of Wnt/ß-catenin-dependent myelin gene expression. Wnt pathway activation by LiCl dampened the deleterious effects of PQT. LiCl blocked PQT-induced oxidative stress and reduced Schwann cell death. LiCl+PQT-treated mice had normal sensorimotor behaviors and a usual nerve structure. INNOVATION: We reveal that PQT damages the sciatic nerve by generating an oxidative stress, dysregulating LXR and Wnt/ß-catenin pathways. The activation of Wnt signaling by LiCl reduced the deleterious effects of PQT on the nerve. CONCLUSION: We demonstrate that PQT instigates peripheral nerve demyelinating neuropathies by enhancing ROS production and deregulating LXR and Wnt pathways. Stimulating Wnt pathway could be a therapeutic strategy for neuropathy treatment. Antioxid. Redox Signal. 27, 168-183.


Asunto(s)
Enfermedades Desmielinizantes/inducido químicamente , Herbicidas/toxicidad , Receptores X del Hígado/metabolismo , Vaina de Mielina/efectos de los fármacos , Paraquat/toxicidad , Vía de Señalización Wnt/efectos de los fármacos , Animales , Línea Celular , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Proteínas de la Mielina/química , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Estrés Oxidativo , Agregación Patológica de Proteínas , Carbonilación Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células de Schwann/citología , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo
14.
J Physiol ; 594(7): 1931-52, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26915343

RESUMEN

KEY POINTS: The real impact of physical exercise parameters, i.e. intensity, type of contraction and solicited energetic metabolism, on neuroprotection in the specific context of neurodegeneration remains poorly explored. In this study behavioural, biochemical and cellular analyses were conducted to compare the effects of two different long-term exercise protocols, high intensity swimming and low intensity running, on motor units of a type 3 spinal muscular atrophy (SMA)-like mouse model. Our data revealed a preferential SMA-induced death of intermediate and fast motor neurons which was limited by the swimming protocol only, suggesting a close relationship between neuron-specific protection and their activation levels by specific exercise. The exercise-induced neuroprotection was independent of SMN protein expression and associated with specific metabolic and behavioural adaptations with notably a swimming-induced reduction of muscle fatigability. Our results provide new insight into the motor units' adaptations to different physical exercise parameters and will contribute to the design of new active physiotherapy protocols for patient care. ABSTRACT: Spinal muscular atrophy (SMA) is a group of autosomal recessive neurodegenerative diseases differing in their clinical outcome, characterized by the specific loss of spinal motor neurons, caused by insufficient level of expression of the protein survival of motor neuron (SMN). No cure is at present available for SMA. While physical exercise might represent a promising approach for alleviating SMA symptoms, the lack of data dealing with the effects of different exercise types on diseased motor units still precludes the use of active physiotherapy in SMA patients. In the present study, we have evaluated the efficiency of two long-term physical exercise paradigms, based on either high intensity swimming or low intensity running, in alleviating SMA symptoms in a mild type 3 SMA-like mouse model. We found that 10 months' physical training induced significant benefits in terms of resistance to muscle damage, energetic metabolism, muscle fatigue and motor behaviour. Both exercise types significantly enhanced motor neuron survival, independently of SMN expression, leading to the maintenance of neuromuscular junctions and skeletal muscle phenotypes, particularly in the soleus, plantaris and tibialis of trained mice. Most importantly, both exercises significantly improved neuromuscular excitability properties. Further, all these training-induced benefits were quantitatively and qualitatively related to the specific characteristics of each exercise, suggesting that the related neuroprotection is strongly dependent on the specific activation of some motor neuron subpopulations. Taken together, the present data show significant long-term exercise benefits in type 3 SMA-like mice providing important clues for designing rehabilitation programmes in patients.


Asunto(s)
Atrofia Muscular Espinal/terapia , Condicionamiento Físico Animal/métodos , Esfuerzo Físico , Animales , Potenciales Evocados Motores , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/fisiopatología , Atrofia Muscular Espinal/prevención & control , Carrera , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Natación
15.
J Neurosci ; 35(34): 12063-79, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26311784

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease characterized by the selective loss of spinal motor neurons due to the depletion of the survival of motor neuron (SMN) protein. No therapy is currently available for SMA, which represents the leading genetic cause of death in childhood. In the present study, we report that insulin-like growth factor-1 receptor (Igf-1r) gene expression is enhanced in the spinal cords of SMA-like mice. The reduction of expression, either at the physiological (through physical exercise) or genetic level, resulted in the following: (1) a significant improvement in lifespan and motor behavior, (2) a significant motor neuron protection, and (3) an increase in SMN expression in spinal cord and skeletal muscles through both transcriptional and posttranscriptional mechanisms. Furthermore, we have found that reducing IGF-1R expression is sufficient to restore intracellular signaling pathway activation profile lying downstream of IGF-1R, resulting in both the powerful activation of the neuroprotective AKT/CREB pathway and the inhibition of the ERK and JAK pathways. Therefore, reducing rather than enhancing the IGF-1 pathway could constitute a useful strategy to limit neurodegeneration in SMA. SIGNIFICANCE STATEMENT: Recent evidence of IGF-1 axis alteration in spinal muscular atrophy (SMA), a very severe neurodegenerative disease affecting specifically the motor neurons, have triggered a renewed interest in insulin-like growth factor-1 (IGF-1) pathway activation as a potential therapeutic approach for motor neuron diseases. The present study challenges this point of view and brings the alternative hypothesis that reducing rather than enhancing the IGF-1 signaling pathway exerts a neuroprotective effect in SMA. Furthermore, the present data substantiate a newly emerging concept that the modulation of IGF-1 receptor expression is a key event selectively determining the activation level of intracellular pathways that lie downstream of the receptor. This aspect should be considered when designing IGF-1-based treatments for neurodegenerative diseases.


Asunto(s)
Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/prevención & control , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Atrofia Muscular Espinal/genética , Receptor IGF Tipo 1/genética
16.
Proc Natl Acad Sci U S A ; 112(24): 7587-92, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26023184

RESUMEN

The identification of new pathways governing myelination provides innovative avenues for remyelination. Liver X receptors (LXRs) α and ß are nuclear receptors activated by oxysterols that originated from the oxidation of cholesterol. They are crucial for cholesterol homeostasis, a major lipid constituent of myelin sheaths that are formed by oligodendrocytes. However, the role of LXRs in myelin generation and maintenance is poorly understood. Here, we show that LXRs are involved in myelination and remyelination processes. LXRs and their ligands are present in oligodendrocytes. We found that mice invalidated for LXRs exhibit altered motor coordination and spatial learning, thinner myelin sheaths, and reduced myelin gene expression. Conversely, activation of LXRs by either 25-hydroxycholesterol or synthetic TO901317 stimulates myelin gene expression at the promoter, mRNA, and protein levels, directly implicating LXRα/ß in the transcriptional control of myelin gene expression. Interestingly, activation of LXRs also promotes oligodendroglial cell maturation and remyelination after lysolecithin-induced demyelination of organotypic cerebellar slice cultures. Together, our findings represent a conceptual advance in the transcriptional control of myelin gene expression and strongly support a new role of LXRs as positive modulators in central (re)myelination processes.


Asunto(s)
Cerebelo/fisiología , Vaina de Mielina/fisiología , Receptores Nucleares Huérfanos/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Cerebelo/citología , Cerebelo/efectos de los fármacos , Colesterol/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis , Hidrocarburos Fluorados/farmacología , Hidroxicolesteroles/farmacología , Receptores X del Hígado , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/genética , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Técnicas de Cultivo de Órganos , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/deficiencia , Regiones Promotoras Genéticas , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Sulfonamidas/farmacología
17.
Neuromuscul Disord ; 24(11): 960-72, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25042397

RESUMEN

Disease processes and trauma affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers cause different levels of muscle weakness, i.e., reduced maximal force production in response to voluntary activation or nerve stimulation. However, the mechanisms of muscle weakness are not well known. Using murine models of amyotrophic lateral sclerosis (SOD1(G93A) transgenic mice), congenital myasthenic syndrome (AChE knockout mice and Musk(V789M/-) mutant mice), Schwartz-Jampel syndrome (Hspg2(C1532YNEO/C1532YNEO) mutant mice) and traumatic nerve injury (Neurotomized wild-type mice), we show that the reduced maximal activation capacity (the ability of the nerve to maximally activate the muscle) explains 52%, 58% and 100% of severe weakness in respectively SOD1(G93A), Neurotomized and Musk mice, whereas muscle atrophy only explains 37%, 27% and 0%. We also demonstrate that the impaired maximal activation capacity observed in SOD1, Neurotomized, and Musk mice is not highly related to Hdac4 gene upregulation. Moreover, in SOD1 and Neurotomized mice our results suggest LC3, Fn14, Bcl3 and Gadd45a as candidate genes involved in the maintenance of the severe atrophic state. In conclusion, our study indicates that muscle weakness can result from the triggering of different signaling pathways. This knowledge may be helpful in designing therapeutic strategies and finding new drug targets for amyotrophic lateral sclerosis, congenital myasthenic syndrome, Schwartz-Jampel syndrome and nerve injury.


Asunto(s)
Potenciales Evocados Motores/fisiología , Neuronas Motoras/patología , Debilidad Muscular/etiología , Enfermedades Musculares/complicaciones , Miofibrillas/patología , Unión Neuroefectora/fisiopatología , Animales , Colinesterasas/genética , Modelos Animales de Enfermedad , Electromiografía , Potenciales Evocados Motores/genética , Regulación de la Expresión Génica/genética , Proteoglicanos de Heparán Sulfato/genética , Ratones , Ratones Transgénicos , Músculo Esquelético/fisiopatología , Enfermedades Musculares/genética , Mutación/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptores del Factor de Necrosis Tumoral/genética , Superóxido Dismutasa/genética , Receptor de TWEAK
18.
Development ; 140(24): 4914-25, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24301466

RESUMEN

The calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway is involved in the modulation of the adult muscle fiber type, but its role in the establishment of the muscle phenotype remains elusive. Here, we show that the NFAT member NFATc2 cooperates with the basic helix-loop-helix transcription factor MyoD to induce the expression of a specific myosin heavy chain (MHC) isoform, the neonatal one, during embryogenesis. We found this cooperation to be crucial, as Myod/Nfatc2 double-null mice die at birth, with a dramatic reduction of the major neonatal MHC isoform normally expressed at birth in skeletal muscles, such as limb and intercostal muscles, whereas its expression is unaffected in myofibers mutated for either factor alone. Using gel shift and chromatin immunoprecipitation assays, we identified NFATc2 bound to the neonatal Mhc gene, whereas NFATc1 and NFATc3 would preferentially bind the embryonic Mhc gene. We provide evidence that MyoD synergistically cooperates with NFATc2 at the neonatal Mhc promoter. Altogether, our findings demonstrate that the calcineurin/NFAT pathway plays a new role in establishing the early muscle fiber type in immature myofibers during embryogenesis.


Asunto(s)
Calcineurina/metabolismo , Desarrollo de Músculos , Músculo Esquelético/embriología , Proteína MioD/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Factores de Transcripción NFATC/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Ratones , Ratones Noqueados , Proteína MioD/genética , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Factores de Transcripción NFATC/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/biosíntesis , Transducción de Señal/inmunología
19.
J Neurosci ; 33(10): 4280-94, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23467345

RESUMEN

Spinal muscular atrophy (SMA), a recessive neurodegenerative disease, is characterized by the selective loss of spinal motor neurons. No available therapy exists for SMA, which represents one of the leading genetic causes of death in childhood. SMA is caused by a mutation of the survival-of-motor-neuron 1 (SMN1) gene, leading to a quantitative defect in the survival-motor-neuron (SMN) protein expression. All patients retain one or more copies of the SMN2 gene, which modulates the disease severity by producing a small amount of stable SMN protein. We reported recently that NMDA receptor activation, directly in the spinal cord, significantly enhanced the transcription rate of the SMN2 genes in a mouse model of very severe SMA (referred as type 1) by a mechanism that involved AKT/CREB pathway activation. Here, we provide the first compelling evidence for a competition between the MEK/ERK/Elk-1 and the phosphatidylinositol 3-kinase/AKT/CREB signaling pathways for SMN2 gene regulation in the spinal cord of type 1 SMA-like mice. The inhibition of the MEK/ERK/Elk-1 pathway promotes the AKT/CREB pathway activation, leading to (1) an enhanced SMN expression in the spinal cord of SMA-like mice and in human SMA myotubes and (2) a 2.8-fold lifespan extension in SMA-like mice. Furthermore, we identified a crosstalk between ERK and AKT signaling pathways that involves the calcium-dependent modulation of CaMKII activity. Together, all these data open new perspectives to the therapeutic strategy for SMA patients.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neuronas Motoras/fisiología , Atrofia Muscular Espinal/patología , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Butadienos/farmacología , Calcio/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Inmunoprecipitación de Cromatina , Técnicas de Cocultivo/métodos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Conducta Exploratoria/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Ganglios Espinales/citología , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Células Musculares/efectos de los fármacos , Células Musculares/fisiología , N-Metilaspartato/farmacología , Nitrilos/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Madre/efectos de los fármacos , Células Madre/fisiología , Proteína 2 para la Supervivencia de la Neurona Motora/deficiencia
20.
Hum Mol Genet ; 22(4): 668-84, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23136128

RESUMEN

SMN1, the causative gene for spinal muscular atrophy (SMA), plays a housekeeping role in the biogenesis of small nuclear RNA ribonucleoproteins. SMN is also present in granular foci along axonal projections of motoneurons, which are the predominant cell type affected in the pathology. These so-called RNA granules mediate the transport of specific mRNAs along neurites and regulate mRNA localization, stability, as well as local translation. Recent work has provided evidence suggesting that SMN may participate in the assembly of RNA granules, but beyond that, the precise nature of its role within these structures remains unclear. Here, we demonstrate that SMN associates with polyribosomes and can repress translation in an in vitro translation system. We further identify the arginine methyltransferase CARM1 as an mRNA that is regulated at the translational level by SMN and find that CARM1 is abnormally up-regulated in spinal cord tissue from SMA mice and in severe type I SMA patient cells. We have previously characterized a novel regulatory pathway in motoneurons involving the SMN-interacting RNA-binding protein HuD and CARM1. Thus, our results suggest the existence of a potential negative feedback loop in this pathway. Importantly, an SMA-causing mutation in the Tudor domain of SMN completely abolished translational repression, a strong indication for the functional significance of this novel SMN activity in the pathology.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Biosíntesis de Proteínas , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Células Cultivadas , Genes Reporteros , Humanos , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Polirribosomas/metabolismo , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Médula Espinal/enzimología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/fisiología , Regiones no Traducidas , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...