Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 17(7): 1423-1430, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34916412

RESUMEN

Protein synthesis is essential for cells to perform life metabolic processes. Pathological alterations of protein content can lead to particular diseases. Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding, accumulation, aggregation or mislocalization occur. Some of them (like the unfolded protein response) represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis (also known as proteostasis). This is even more important in neurons, as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age. Several neurodegenerative pathologies such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct, unbalanced protein overload. In amyotrophic lateral sclerosis and frontotemporal dementia, the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa (TDP-43). TDP-43 is an RNA binding protein that participates in RNA metabolism, among other functions. Dysregulation of TDP-43 (e.g. aggregation and mislocalization) can dramatically affect neurons, and this has been linked to disease development. Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum. These variants can be causative of degeneration onset and progression. Most neurodegenerative diseases (including amyotrophic lateral sclerosis and frontotemporal dementia) have no cure at the moment; however, modulating translation has recently emerged as an attractive approach that can be performed at several steps (i.e. regulating activation of initiation and elongation factors, inhibiting unfolded protein response activation or inducing chaperone expression and activity). This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis. We strive to highlight the importance of research on drugs that, not only restore protein imbalance without compromising translational activity of cells, but are also as safe as possible for the patients.

2.
Front Cell Neurosci ; 14: 594561, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363456

RESUMEN

TDP-43 is a major component of cytoplasmic inclusions observed in neurodegenerative diseases like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). To further understand the role of TDP-43 in mRNA/protein metabolism and proteostasis, we used a combined approach with cellular and animal models overexpressing a cytoplasmic form of human TDP-43 (TDP-43-ΔNLS), recapitulating ALS/FTD features. We applied in HEK293 cells a method for labeling de novo translation, surface sensing of translation (SUnSET), based on puromycin (PURO) incorporation. While control cells displayed robust puromycilation, TDP-43-ΔNLS transfected cells exhibited reduced ongoing protein synthesis. Next, by using a transgenic mouse overexpressing cytoplasmic TDP-43 in the forebrain (TDP-43-ΔNLS mice) we assessed whether cytoplasmic TDP-43 regulates global translation in vivo. Polysome profiling of brain cortices from transgenic mice showed a shift toward non-polysomal fractions as compared to wild-type littermates, indicating a decrease in global translation. Lastly, cellular level translational assessment by SUNSET was performed in TDP-43-ΔNLS mice brain slices. Control mice slices incubated with PURO exhibited robust cytoplasmic PURO signal in layer 5 neurons from motor cortex, and normal nuclear TDP-43 staining. Neurons in TDP-43-ΔNLS mice slices incubated with PURO exhibited high cytoplasmic expression of TDP-43 and reduced puromycilation respect to control mice. These in vitro and in vivo results indicate that cytoplasmic TDP-43 decreases global translation and potentially cause functional/cytotoxic effects as observed in ALS/FTD. Our study provide in vivo evidence (by two independent and complementary methods) for a role of mislocalized TDP-43 in the regulation of global mRNA translation, with implications for TDP-43 proteinopathies.

3.
J Steroid Biochem Mol Biol ; 200: 105627, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32070756

RESUMEN

The South American plains vizcacha, Lagostomus maximus, is the only mammal described so far that shows expression of estrogen receptors (ERs) and progesterone receptors (PRs) in gonadotropin-releasing hormone (GnRH) neurons. This animal therefore constitutes an exceptional model for the study of the effect of steroid hormones on the modulation of the hypothalamic-pituitary-ovarian (HPO) axis. By using both in vivo and ex vivo approaches, we have found that pharmacological doses of progesterone (P4) and estradiol (E2) produced an inhibition in the expression of hypothalamic GnRH, while physiological doses produced a differential effect on the pulsatile release frequency or genomic expression of GnRH. Our ex vivo experiment indicates that a short-term effect of E2 modulates the frequency of GnRH release pattern that would be associated with membrane ERs. On the other hand, our in vivo approach suggests that a long-term effect of E2, acting through the classical nuclear ERs-PRs pathway, would produce the modification of GnRH mRNA expression during the GnRH pre-ovulatory surge. Particularly, P4 induced a rise in GnRH mRNA expression and protein release with a decrease in its release frequency. These results suggest different levels of action of steroid hormones on GnRH modulation. We conclude that the fine action of E2 and P4 constitute the key factor to enable the hypothalamic activity during the pregnancy of this mammal.


Asunto(s)
Estradiol/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/efectos de los fármacos , Progesterona/farmacología , Animales , Estradiol/sangre , Femenino , Hormona Liberadora de Gonadotropina/genética , Sistema Hipotálamo-Hipofisario , Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Ovariectomía , Ovario , Progesterona/sangre , Roedores
4.
Physiol Rep ; 5(19)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29038356

RESUMEN

Females of the South American plains vizcacha, Lagostomus maximus, show peculiar reproductive features such as massive polyovulation up to 800 oocytes per estrous cycle and an ovulatory process around mid-gestation arising from the reactivation of the hypothalamic-hypophyseal-ovary (H.H.O.) axis. Estradiol (E2) regulates gonadotropin-releasing hormone (GnRH) expression. Biosynthesis of estrogens results from the aromatization of androgens by aromatase, which mainly occurs in the gonads, but has also been described in the hypothalamus. The recently described correlation between GnRH and ERα expression patterns in the hypothalamus of the vizcacha during pregnancy, with coexpression in the same neurons of the medial preoptic area, suggests that hypothalamic synthesis of E2 may affect GnRH neurons and contribute with systemic E2 to modulate GnRH delivery during the gestation. To elucidate this hypothesis, hypothalamic expression and the action of aromatase on GnRH release were evaluated in female vizcachas throughout pregnancy. Aromatase and GnRH expression was increased significantly in mid-pregnant and term-pregnant vizcachas compared to early-pregnant and nonpregnant females. In addition, aromatase and GnRH were colocalized in neurons of the medial preoptic area of the hypothalamus throughout gestation. The blockage of the negative feedback of E2 induced by the inhibition of aromatase resulted in a significant increment of GnRH-secreted mass by hypothalamic explants. E2 produced in the same neurons as GnRH may drive intracellular E2 to higher levels than those obtained from systemic circulation alone. This may trigger for a prompt GnRH availability enabling H.H.O. activity at mid-gestation with ovulation and formation of accessory corpora lutea with steroidogenic activity that produce the necessary progesterone to maintain gestation to term and guarantee the reproductive success.


Asunto(s)
Estradiol/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Embarazo/metabolismo , Animales , Aromatasa/metabolismo , Retroalimentación Fisiológica , Femenino , Hipotálamo/citología , Neuronas/metabolismo , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...