Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(52): E8433-E8442, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956623

RESUMEN

Mutations in the p53 tumor suppressor gene are the most frequent genetic alteration in cancer and are often associated with progression from benign to invasive stages with metastatic potential. Mutations inactivate tumor suppression by p53, and some endow the protein with novel gain of function (GOF) properties that actively promote tumor progression and metastasis. By comparative gene expression profiling of p53-mutated and p53-depleted cancer cells, we identified ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) as a mutant p53 target gene, which functions as a uridine 5'-diphosphatase (UDPase) in the endoplasmic reticulum (ER) to promote the folding of N-glycosylated membrane proteins. A comprehensive pan-cancer analysis revealed a highly significant correlation between p53 GOF mutations and ENTPD5 expression. Mechanistically, mutp53 is recruited by Sp1 to the ENTPD5 core promoter to induce its expression. We show ENTPD5 to be a mediator of mutant p53 GOF activity in clonogenic growth, architectural tissue remodeling, migration, invasion, and lung colonization in an experimental metastasis mouse model. Our study reveals folding of N-glycosylated membrane proteins in the ER as a mechanism underlying the metastatic progression of tumors with mutp53 that could provide new possibilities for cancer treatment.


Asunto(s)
Retículo Endoplásmico/metabolismo , Metástasis de la Neoplasia , Proteínas Oncogénicas/metabolismo , Pirofosfatasas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis , Calnexina/metabolismo , Calreticulina/metabolismo , Carcinogénesis/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Glicoproteínas/metabolismo , Glicosilación , Humanos , Masculino , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Mutación , Invasividad Neoplásica , Pronóstico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factor de Transcripción Sp1/metabolismo
2.
Nucleic Acids Res ; 44(7): 3204-18, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26819410

RESUMEN

TP63, a member of the p53 gene family gene, encodes the ΔNp63 protein and is one of the most frequently amplified genes in squamous cell carcinomas (SCC) of the head and neck (HNSCC) and lungs (LUSC). Using an epiallelic series of siRNAs with intrinsically different knockdown abilities, we show that the complete loss of ΔNp63 strongly impaired cell proliferation, whereas partial ΔNp63 depletion rendered cells hypersensitive to cisplatin accompanied by an accumulation of DNA damage. Expression profiling revealed wide-spread transcriptional regulation of DNA repair genes and in particular Fanconi anemia (FA) pathway components such as FANCD2 and RAD18 - known to be crucial for the repair of cisplatin-induced interstrand crosslinks. In SCC patients ΔNp63 levels significantly correlate with FANCD2 and RAD18 expression confirming ΔNp63 as a key activator of the FA pathway in vivo Mechanistically, ΔNp63 bound an upstream enhancer of FANCD2 inactive in primary keratinocytes but aberrantly activated by ΔNp63 in SCC. Consistently, depletion of FANCD2 sensitized to cisplatin similar to depletion of ΔNp63. Together, our results demonstrate that ΔNp63 directly activates the FA pathway in SCC and limits the efficacy of cisplatin treatment. Targeting ΔNp63 therefore would not only inhibit SCC proliferation but also sensitize tumors to chemotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/genética , Cisplatino/uso terapéutico , Reparación del ADN , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Elementos de Facilitación Genéticos , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Humanos , Factores de Transcripción/fisiología , Activación Transcripcional , Proteínas Supresoras de Tumor/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
3.
Nat Chem Biol ; 12(1): 22-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595461

RESUMEN

Inactivation of the p53 tumor suppressor by Mdm2 is one of the most frequent events in cancer, so compounds targeting the p53-Mdm2 interaction are promising for cancer therapy. Mechanisms conferring resistance to p53-reactivating compounds are largely unknown. Here we show using CRISPR-Cas9-based target validation in lung and colorectal cancer that the activity of nutlin, which blocks the p53-binding pocket of Mdm2, strictly depends on functional p53. In contrast, sensitivity to the drug RITA, which binds the Mdm2-interacting N terminus of p53, correlates with induction of DNA damage. Cells with primary or acquired RITA resistance display cross-resistance to DNA crosslinking compounds such as cisplatin and show increased DNA cross-link repair. Inhibition of FancD2 by RNA interference or pharmacological mTOR inhibitors restores RITA sensitivity. The therapeutic response to p53-reactivating compounds is therefore limited by compound-specific resistance mechanisms that can be resolved by CRISPR-Cas9-based target validation and should be considered when allocating patients to p53-reactivating treatments.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a Antineoplásicos/efectos de los fármacos , Furanos/farmacología , Genes p53 , Terapia Molecular Dirigida/métodos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Regulación de la Expresión Génica , Genes p53/fisiología , Células HCT116/efectos de los fármacos , Humanos , Morfolinas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas
4.
Nat Commun ; 5: 3981, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24889111

RESUMEN

Tumours are heterogeneous cell populations that undergo clonal evolution during tumour progression, metastasis and response to therapy. Short hairpin RNAs (shRNAs) generate stable loss-of-function phenotypes and are versatile experimental tools to explore the contribution of individual genetic alterations to clonal evolution. In these experiments tumour cells carrying shRNAs are commonly tracked with fluorescent reporters. While this works well for cell culture studies and leukaemia mouse models, fluorescent reporters are poorly suited for animals with solid tumours--the most common tumour types in cancer patients. Here we develop a toolkit that uses secreted luciferases to track the fate of two different shRNA-expressing tumour cell clones competitively, both in vitro and in vivo. We demonstrate that secreted luciferase activities can be measured robustly in the blood stream of tumour-bearing mice to accurately quantify, in a minimally invasive manner, the dynamic evolution of two genetically distinct tumour subclones in preclinical mouse models of tumour development, metastasis and therapy.


Asunto(s)
Evolución Clonal/genética , Vectores Genéticos , Luciferasas , Neoplasias/genética , ARN Interferente Pequeño/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Células HCT116 , Humanos , Técnicas In Vitro , Ratones , Microscopía Fluorescente , Neoplasias/metabolismo
5.
Cell Cycle ; 9(20): 4068-76, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20948308

RESUMEN

The tumor suppressor p53 provides exquisite protection from cancer by balancing cell survival and death in response to stress. Sustained stress or irreparable damage trigger p53's killer functions to permanently eliminate genetically-altered cells as a potential source of cancer. To prevent the unnecessary loss of cells that could cause premature aging as a result of stem cell attrition, the killer functions of p53 are tightly regulated and balanced against protector functions that promote damage repair and support survival in response to low stress or mild damage. In molecular terms these p53-based cell fate decisions involve protein interactions with cofactors and modifying enzymes, which modulate the activation of distinct sets of p53 target genes. In addition, we demonstrate that part of this regulation occurs at the level of DNA binding. We show that the killer function of p53 requires the four DNA binding domains within the p53 tetramer to interact with one another. These intermolecular interactions enable cooperative binding of p53 to less perfect response elements in the genome, which are present in many target genes essential for apoptosis. Modulating p53 interactions within the tetramer could therefore present a novel promising strategy to fine-tune p53-based cell fate decisions.


Asunto(s)
Apoptosis/fisiología , ADN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Bases , Sitios de Unión , Secuencia de Consenso , ADN/genética , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Unión Proteica , Procesamiento Proteico-Postraduccional
6.
Mol Cell ; 38(3): 356-68, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20471942

RESUMEN

p53 limits the proliferation of precancerous cells by inducing cell-cycle arrest or apoptosis. How the decision between survival and death is made at the level of p53 binding to target promoters remains unclear. Using cancer cell lines, we show that the cooperative nature of DNA binding extends the binding spectrum of p53 to degenerate response elements in proapoptotic genes. Mutational inactivation of cooperativity therefore does not compromise the cell-cycle arrest response but strongly reduces binding of p53 to multiple proapoptotic gene promoters (BAX, PUMA, NOXA, CASP1). Vice versa, engineered mutants with increased cooperativity show enhanced binding to proapoptotic genes, which shifts the cellular response to cell death. Furthermore, the cooperativity of DNA binding determines the extent of apoptosis in response to DNA damage. Because mutations, which impair cooperativity, are genetically linked to cancer susceptibility in patients, DNA binding cooperativity contributes to p53's tumor suppressor activity.


Asunto(s)
Apoptosis , Ciclo Celular , Proliferación Celular , ADN/metabolismo , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Sitios de Unión , Ciclo Celular/genética , Daño del ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Factores de Tiempo , Transfección , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...