Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7076, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400772

RESUMEN

The ProQ/FinO family of RNA binding proteins mediate sRNA-directed gene regulation throughout gram-negative bacteria. Here, we investigate the structural basis for RNA recognition by ProQ/FinO proteins, through the crystal structure of the ProQ/FinO domain of the Legionella pneumophila DNA uptake regulator, RocC, bound to the transcriptional terminator of its primary partner, the sRNA RocR. The structure reveals specific recognition of the 3' nucleotide of the terminator by a conserved pocket involving a ß-turn-α-helix motif, while the hairpin portion of the terminator is recognized by a conserved α-helical N-cap motif. Structure-guided mutagenesis reveals key RNA contact residues that are critical for RocC/RocR to repress the uptake of environmental DNA in L. pneumophila. Structural analysis and RNA binding studies reveal that other ProQ/FinO domains also recognize related transcriptional terminators with different specificities for the length of the 3' ssRNA tail.


Asunto(s)
ARN Pequeño no Traducido , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , ARN Pequeño no Traducido/genética
2.
J Antimicrob Chemother ; 77(6): 1542-1552, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35412620

RESUMEN

OBJECTIVES: To characterize Acinetobacter baumannii strains co-producing the ESBL CTX-M-115 and carbapenem-hydrolysing class D ß-lactamases (CHDLs), and to assess the potential diffusion of their resistance genes by horizontal transfer. METHODS: Nineteen CTX-M-115/CHDL-positive A. baumannii were collected between 2015 and 2019 from patients hospitalized in France. Their whole-genome sequences were determined on Illumina and Oxford Nanopore platforms and were compared through core-genome MLST (cgMLST) and SNP analyses. Transferability of resistance genes was investigated by natural transformation assays. RESULTS: Eighteen strains were found to harbour CHDL OXA-72, and another one CHDL OXA-23, in addition to CTX-M-115, narrow-spectrum ß-lactamases and aminoglycoside resistance determinants including ArmA. cgMLST typing, as well as Oxford Scheme ST and K locus typing, confirmed that 17 out of the 18 CTX-M-115/OXA-72 isolates belonged to new subclades within clonal complex 78 (CC78). The chromosomal region carrying the blaCTX-M-115 gene appeared to vary greatly both in gene content and in length (from 20 to 79 kb) among the strains, likely because of IS26-mediated DNA rearrangements. The blaOXA-72 gene was localized on closely related plasmids showing structural variations that occurred between pdif sites. Transfer of all the ß-lactamase genes, as well as aminoglycoside resistance determinants to a drug-susceptible A. baumannii recipient, was easily obtained in vitro by natural transformation. CONCLUSIONS: This work highlights the propensity of CC78 isolates to collect multiple antibiotic resistance genes, to rearrange and to pass them to other A. baumannii strains via natural transformation. This process, along with mobile genetic elements, likely contributes to the considerable genomic plasticity of clinical strains, and to the diversity of molecular mechanisms sustaining their multidrug resistance.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Aminoglicósidos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Genómica , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , beta-Lactamasas/genética
4.
mBio ; 13(1): e0263121, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073754

RESUMEN

Acinetobacter baumannii infection poses a major health threat, with recurrent treatment failure due to antibiotic resistance, notably to carbapenems. While genomic analyses of clinical strains indicate that homologous recombination plays a major role in the acquisition of antibiotic resistance genes, the underlying mechanisms of horizontal gene transfer often remain speculative. Our understanding of the acquisition of antibiotic resistance is hampered by the lack of experimental systems able to reproduce genomic observations. We here report the detection of recombination events occurring spontaneously in mixed bacterial populations and which can result in the acquisition of resistance to carbapenems. We show that natural transformation is the main driver of intrastrain but also interstrain recombination events between A. baumannii clinical isolates and pathogenic species of Acinetobacter. We observed that interbacterial natural transformation in mixed populations is more efficient at promoting the acquisition of large resistance islands (AbaR4 and AbaR1) than when the same bacteria are supplied with large amounts of purified genomic DNA. Importantly, analysis of the genomes of the recombinant progeny revealed large recombination tracts (from 13 to 123 kb) similar to those observed in the genomes of clinical isolates. Moreover, we highlight that transforming DNA availability is a key determinant of the rate of recombinants and results from both spontaneous release and interbacterial predatory behavior. In the light of our results, natural transformation should be considered a leading mechanism of genome recombination and horizontal gene transfer of antibiotic resistance genes in Acinetobacter baumannii. IMPORTANCE Acinetobacter baumannii is a multidrug-resistant pathogen responsible for difficult-to-treat hospital-acquired infections. Understanding the mechanisms leading to the emergence of the multidrug resistance in this pathogen today is crucial. Horizontal gene transfer is assumed to largely contribute to this multidrug resistance. However, in A. baumannii, the mechanisms leading to genome recombination and the horizontal transfer of resistance genes are poorly understood. We describe experimental evidence that natural transformation, a horizontal gene transfer mechanism recently highlighted in A. baumannii, allows the highly efficient interbacterial transfer of genetic elements carrying resistance to last-line antibiotic carbapenems. Importantly, we demonstrated that natural transformation, occurring in mixed populations of Acinetobacter, enables the transfer of large resistance island-mobilizing multiple-resistance genes.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infecciones por Acinetobacter/microbiología , Animales , Antibacterianos/farmacología , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana
5.
Appl Environ Microbiol ; 87(18): e0074721, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34232736

RESUMEN

Here, we sought to test the resistance of human pathogens to unaltered environmental free-living amoebae. Amoebae are ubiquitous eukaryotic microorganisms and important predators of bacteria. Environmental amoebae have also been proposed to serve as both potential reservoirs and training grounds for human pathogens. However, studies addressing their relationships with human pathogens often rely on a few domesticated amoebae that have been selected to feed on rich medium, thereby possibly overestimating the resistance of pathogens to these predatory phagocytes. From an open-air composting site, we recovered over 100 diverse amoebae that were able to feed on Acinetobacter baumannii and Klebsiella pneumoniae. In a standardized and quantitative assay for predation, the isolated amoebae showed a broad predation spectrum, killing clinical isolates of A. baumannii, K. pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Interestingly, A. baumannii, which was previously reported to resist predation by laboratory strains of Acanthamoeba, was efficiently consumed by closely related environmental amoebae. The isolated amoebae were capable of feeding on highly virulent carbapenem-resistant or methicillin-resistant clinical isolates. In conclusion, the natural environment is a rich source of amoebae with broad-spectrum bactericidal activities, including against antibiotic-resistant isolates. IMPORTANCE Free-living amoebae have been proposed to play an important role in hosting and disseminating various human pathogens. The resistance of human pathogens to predation by amoebae is often derived from in vitro experiments using model amoebae. Here, we sought to isolate environmental amoebae and to test their predation on diverse human pathogens, with results that challenge conclusions based on model amoebae. We found that the natural environment is a rich source of diverse amoebae with broad-spectrum predatory activities against human pathogens, including highly virulent and antibiotic-resistant clinical isolates.


Asunto(s)
Amoeba/fisiología , Bacterias/crecimiento & desarrollo , Interacciones Microbianas , Antibacterianos , Carbapenémicos , Compostaje , Farmacorresistencia Bacteriana , Farmacorresistencia Bacteriana Múltiple , Humanos , Microbiología del Suelo
6.
J Bacteriol ; 203(3)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33168636

RESUMEN

Legionella pneumophila is a Gram-negative bacterium ubiquitous in freshwater environments which, if inhaled, can cause a severe pneumonia in humans. The emergence of L. pneumophila is linked to several traits selected in the environment, the acquisition of some of which involved intra- and interkingdom horizontal gene transfer events. Transposon insertion sequencing (TIS) is a powerful method to identify the genetic basis of selectable traits as well as to identify fitness determinants and essential genes, which are possible antibiotic targets. TIS has not yet been used to its full power in L. pneumophila, possibly because of the difficulty of obtaining a high-saturation transposon insertion library. Indeed, we found that isolates of sequence type 1 (ST1), which includes the commonly used laboratory strains, are poorly permissive to saturating mutagenesis by conjugation-mediated transposon delivery. In contrast, we obtained high-saturation libraries in non-ST1 clinical isolates, offering the prospect of using TIS on unaltered L. pneumophila strains. Focusing on one of them, we then used TIS to identify essential genes in L. pneumophila We also revealed that TIS could be used to identify genes controlling vertical transmission of mobile genetic elements. We then applied TIS to identify all the genes required for L. pneumophila to develop competence and undergo natural transformation, defining the set of major and minor type IV pilins that are engaged in DNA uptake. This work paves the way for the functional exploration of the L. pneumophila genome by TIS and the identification of the genetic basis of other life traits of this species.IMPORTANCELegionella pneumophila is the etiologic agent of a severe form of nosocomial and community-acquired pneumonia in humans. The environmental life traits of L. pneumophila are essential to its ability to accidentally infect humans. A comprehensive identification of their genetic basis could be obtained through the use of transposon insertion sequencing. However, this powerful approach had not been fully implemented in L. pneumophila Here, we describe the successful implementation of the transposon-sequencing approach in a clinical isolate of L. pneumophila We identify essential genes, potential drug targets, and genes required for horizontal gene transfer by natural transformation. This work represents an important step toward identifying the genetic basis of the many life traits of this environmental and pathogenic species.


Asunto(s)
Elementos Transponibles de ADN/genética , Genes Esenciales , Legionella pneumophila/genética , Legionella pneumophila/aislamiento & purificación , Supervivencia Celular , Biblioteca de Genes , Transferencia de Gen Horizontal , Legionella , Mutagénesis
7.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32778544

RESUMEN

With a great diversity in gene composition, including multiple putative antibiotic resistance genes, AbaR islands are potential contributors to multidrug resistance in Acinetobacter baumannii However, the effective contribution of AbaR to antibiotic resistance and bacterial physiology remains elusive. To address this, we sought to accurately remove AbaR islands and restore the integrity of their insertion site. To this end, we devised a versatile scarless genome editing strategy. We performed this genetic modification in two recent A. baumannii clinical strains: the strain AB5075 and the nosocomial strain AYE, which carry AbaR11 and AbaR1 islands of 19.7 kbp and 86.2 kbp, respectively. Antibiotic susceptibilities were then compared between the parental strains and their AbaR-cured derivatives. As anticipated by the predicted function of the open reading frame (ORF) of this island, the antibiotic resistance profiles were identical between the wild type and the AbaR11-cured AB5075 strains. In contrast, AbaR1 carries 25 ORFs, with predicted resistance to several classes of antibiotics, and the AYE AbaR1-cured derivative showed restored susceptibility to multiple classes of antibiotics. Moreover, curing of AbaRs restored high levels of natural transformability. Indeed, most AbaR islands are inserted into the comM gene involved in natural transformation. Our data indicate that AbaR insertion effectively inactivates comM and that the restored comM is functional. Curing of AbaR consistently resulted in highly transformable and therefore easily genetically tractable strains. Emendation of AbaR provides insight into the functional consequences of AbaR acquisition.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Islas Genómicas/genética , Islas
8.
mBio ; 11(2)2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127449

RESUMEN

Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation.IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization.


Asunto(s)
Bacterias/genética , Simulación por Computador , Genoma Bacteriano , Secuencias Repetitivas Esparcidas , Transformación Bacteriana , Microbiología Ambiental , Transferencia de Gen Horizontal
9.
Proc Natl Acad Sci U S A ; 116(37): 18613-18618, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31455740

RESUMEN

Natural transformation (i.e., the uptake of DNA and its stable integration in the chromosome) is a major mechanism of horizontal gene transfer in bacteria. Although the vast majority of bacterial genomes carry the genes involved in natural transformation, close relatives of naturally transformable species often appear not competent for natural transformation. In addition, unexplained extensive variations in the natural transformation phenotype have been reported in several species. Here, we addressed this phenomenon by conducting a genome-wide association study (GWAS) on a panel of isolates of the opportunistic pathogen Legionella pneumophila GWAS revealed that the absence of the transformation phenotype is associated with the conjugative plasmid pLPL. The plasmid inhibits transformation by simultaneously silencing the genes required for DNA uptake and recombination. We identified a small RNA (sRNA), RocRp, as the sole plasmid-encoded factor responsible for the silencing of natural transformation. RocRp is homologous to the highly conserved and chromosome-encoded sRNA RocR which controls the transient expression of the DNA uptake system. Assisted by the ProQ/FinO-domain RNA chaperone RocC, RocRp acts as a substitute of RocR, ensuring that the bacterial host of the conjugative plasmid does not become naturally transformable. Distinct homologs of this plasmid-encoded sRNA are found in diverse conjugative elements in other Legionella species. Their low to high prevalence may result in the lack of transformability of some isolates up to the apparent absence of natural transformation in the species. Generally, our work suggests that conjugative elements obscure the widespread occurrence of natural transformability in bacteria.


Asunto(s)
Transferencia de Gen Horizontal , Legionella pneumophila/genética , Plásmidos/genética , ARN Pequeño no Traducido/genética , Transformación Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Estudio de Asociación del Genoma Completo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , ARN , ARN Pequeño no Traducido/metabolismo
10.
Methods Mol Biol ; 1921: 93-105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30694487

RESUMEN

Studying bacterial physiology and pathogenesis often requires isolation of targeted mutants. From the early days of bacterial genetics, many genetic tools have been developed to achieve this goal in a lot of bacteria species, and a major key is to be able to manipulate the targeted genome region with a minimum impact on the rest of the genome. Here, we described a two-step protocol relevant in Legionella pneumophila. This efficient two-step protocol uses the natural transformability of L. pneumophila and linear DNA fragments as substrates for recombination without the necessity of intermediate hosts to amplify targeted DNA. Based on a suicide cassette strategy, this genetic toolbox enables to generate clean scar-free deletions, single-nucleotide mutation, transcriptional or translational fusions, as well as insertion at any chosen place in L. pneumophila chromosome, therefore enabling multiple mutations with no need of multiple selection markers.


Asunto(s)
Edición Génica , Legionella pneumophila/fisiología , Enfermedad de los Legionarios/microbiología , Edición Génica/métodos , Mutagénesis Insercional , Recombinación Genética , Eliminación de Secuencia , Transformación Bacteriana
11.
Methods Mol Biol ; 1921: 107-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30694488

RESUMEN

Transposition-sequencing (Tn-seq) has recently emerged as a powerful technique to query bacterial genomes. Tn-seq can be used to query the bacterial genome with unprecedented resolution, allowing the identification of small genes (e.g., noncoding RNA) that may be missed in conventional screening approaches. Tn-seq can be used to predict genes essential for in vitro growth and to directly identify genetic requirements for survival under multiple conditions. For instance, Tn-seq can be applied to determine the genes, and cellular processes, required to resist an antibacterial treatment or to acquire new resistance genes, to adapt to intracellular life or to compete with other bacteria. Virtually any assay that involves a selection pressure can be used to identify the associated genetic determinants. So far, genome-wide Tn-seq has not been applied to Legionella species. Here, we provide a protocol covering all the different steps to conduct a Tn-seq analysis in L. pneumophila. This includes generating a high-density library of insertional mutants, setting up a selection screen, sequencing the libraries, mapping the insertion sites, and analyzing the data to obtain the list of genes involved in surviving the applied selection.


Asunto(s)
Elementos Transponibles de ADN , Genoma Bacteriano , Genómica/métodos , Legionella/genética , Biología Computacional , Análisis de Datos , Genes Bacterianos , Genes Esenciales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutagénesis Insercional
12.
J Bacteriol ; 200(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30012729

RESUMEN

Acinetobacter baumannii is a nosocomial agent with a high propensity for developing resistance to antibiotics. This ability relies on horizontal gene transfer mechanisms occurring in the Acinetobacter genus, including natural transformation. To study natural transformation in bacteria, the most prevalent method uses selection for the acquisition of an antibiotic resistance marker in a target chromosomal locus by the recipient cell. Most clinical isolates of A. baumannii are resistant to multiple antibiotics, limiting the use of such selection-based methods. Here, we report the development of a phenotypic and selection-free method based on flow cytometry to detect transformation events in multidrug-resistant (MDR) clinical A. baumannii isolates. To this end, we engineered a translational fusion between the abundant and conserved A. baumannii nucleoprotein (HU) and the superfolder green fluorescent protein (sfGFP). The new method was benchmarked against the conventional antibiotic selection-based method. Using this new method, we investigated several parameters affecting transformation efficiencies and identified conditions of transformability one hundred times higher than those previously reported. Using optimized transformation conditions, we probed natural transformation in a set of MDR clinical and nonclinical animal A. baumannii isolates. Regardless of their origin, the majority of the isolates displayed natural transformability, indicative of a conserved trait in the species. Overall, this new method and optimized protocol will greatly facilitate the study of natural transformation in the opportunistic pathogen A. baumanniiIMPORTANCE Antibiotic resistance is a pressing global health concern with the rise of multiple and panresistant pathogens. The rapid and unfailing resistance to multiple antibiotics of the nosocomial agent Acinetobacter baumannii, notably to carbapenems, prompt to understand the mechanisms behind acquisition of new antibiotic resistance genes. Natural transformation, one of the horizontal gene transfer mechanisms in bacteria, was only recently described in A. baumannii and could explain its ability to acquire resistance genes. We developed a reliable method to probe and study natural transformation mechanism in A. baumannii More broadly, this new method based on flow cytometry will allow experimental detection and quantification of horizontal gene transfer events in multidrug-resistant A. baumannii.


Asunto(s)
Acinetobacter baumannii/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Transferencia de Gen Horizontal , Transformación Bacteriana , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Proteínas de Unión al ADN/genética , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente
13.
Artículo en Inglés | MEDLINE | ID: mdl-29158279

RESUMEN

trans-Translation is a ribosome-rescue system that is ubiquitous in bacteria. Small molecules defining a new family of oxadiazole compounds that inhibit trans-translation have been found to have broad-spectrum antibiotic activity. We sought to determine the activity of KKL-35, a potent member of the oxadiazole family, against the human pathogen Legionella pneumophila and other related species that can also cause Legionnaires' disease (LD). Consistent with the essential nature of trans-translation in L. pneumophila, KKL-35 inhibited the growth of all tested strains at submicromolar concentrations. KKL-35 was also active against other LD-causing Legionella species. KKL-35 remained equally active against L. pneumophila mutants that have evolved resistance to macrolides. KKL-35 inhibited the multiplication of L. pneumophila in human macrophages at several stages of infection. No resistant mutants could be obtained, even during extended and chronic exposure. Surprisingly, KKL-35 was not synergistic with other ribosome-targeting antibiotics and did not induce the filamentation phenotype observed in cells defective for trans-translation. Importantly, KKL-35 remained active against L. pneumophila mutants expressing an alternate ribosome-rescue system and lacking transfer-messenger RNA, the essential component of trans-translation. These results indicate that the antibiotic activity of KKL-35 is not related to the specific inhibition of trans-translation and its mode of action remains to be identified. In conclusion, KKL-35 is an effective antibacterial agent against the intracellular pathogen L. pneumophila with no detectable resistance development. However, further studies are needed to better understand its mechanism of action and to assess further the potential of oxadiazoles in treatment.


Asunto(s)
Antibacterianos/farmacología , Benzamidas/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Legionella pneumophila/efectos de los fármacos , Legionella/efectos de los fármacos , Oxadiazoles/farmacología , Línea Celular , Humanos , Legionella/crecimiento & desarrollo , Legionella pneumophila/crecimiento & desarrollo , Enfermedad de los Legionarios , Macrólidos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Biosíntesis de Proteínas
14.
Methods Mol Biol ; 1615: 489-499, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28667632

RESUMEN

Among the bacterial secretion systems, the Type III, IV, and VI secretion systems enable bacteria to secrete proteins directly into a target cell. This specific form of secretion, referred to as translocation, is essential for a number of pathogens to alter or kill targeted cells. The translocated proteins, called effector proteins, can directly interfere with the normal processes of the targeted cells, preventing elimination of pathogens and promoting their multiplication. The function of effector proteins varies greatly depending on the considered pathogen and the targeted cell. In addition, there is often no magic bullet, and the number of effector proteins can range from a handful to hundreds, with, for instance, a substrate of over 300 effector proteins of the Icm/Dot Type IV secretion system in the human pathogen Legionella pneumophila. Identifying, detecting, and monitoring the translocation of each of the effector proteins represents an active field of research and is key to understanding the bacterial molecular weaponry. Translational fusion of an effector with a reporter protein of known activity remains the best method to monitor effector translocation. The development of a fluorescent substrate for the TEM-1 beta-lactamase has turned this antibiotic-resistant protein into a highly versatile reporter system for investigating protein transfer events associated with microbial infection of host cells. Here we describe a simple protocol to assay the translocation of an effector protein by the Icm/Dot system of the human pathogen Legionella pneumophila.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Línea Celular Tumoral , Expresión Génica , Orden Génico , Vectores Genéticos/genética , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Microscopía Fluorescente , Transporte de Proteínas , Translocación Genética
15.
Trends Microbiol ; 25(4): 247-249, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28189381

RESUMEN

The stability and function of regulatory small RNAs (sRNAs) often require a specialized RNA-binding protein called an RNA chaperone. Recent findings show that proteins containing a ProQ/FinO domain constitute a new class of RNA chaperones that could play key roles in post-transcriptional gene regulation throughout bacterial species.


Asunto(s)
Escherichia coli/genética , Chaperonas Moleculares/genética , Dominios Proteicos/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo
16.
Curr Genet ; 63(3): 451-455, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27826682

RESUMEN

Bacteria can undergo genetic transformation by actively integrating genetic information from phylogenetically related or unrelated organisms. The original function of natural transformation remains a subject of debate, but it is well established as a major player in genome evolution. Naturally transformable bacteria use a highly conserved DNA uptake system to internalize DNA and integrate it in their chromosome by homologous recombination. Expression of the DNA uptake system, often referred to as competence, is tightly controlled and induced by signals that are often elusive. Initially thought to be restricted to a few bacterial species, natural transformation increasingly seems widespread in bacteria. Yet, the triggering signals and regulatory mechanisms involved appear diverse and are understood only in a limited set of species. As a result, natural transformation in most bacterial species remains poorly documented and the potential impact of this mechanism on global genetic mobilization is likely underappreciated. Indeed, even when a conserved activator can be identified to artificially induce the expression of the DNA uptake system, the considered species may still remain non-transformable. Recent works indicate that the DNA uptake system is directly subjected to silencing. At least in Legionella pneumophila and possibly in other species, a small non-coding RNA prevents expression of the DNA uptake system. Silencing constitutes one more way bacteria control expression of their engine of genetic exchange. It may also be the underlying reason of the undetectable natural transformation of many bacterial species grown under laboratory conditions even though they possess a DNA uptake system.


Asunto(s)
ADN Bacteriano/genética , ARN Pequeño no Traducido/genética , Transformación Bacteriana/genética , Transformación Genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Recombinación Homóloga/genética , Legionella pneumophila/genética
17.
Sci Rep ; 6: 37935, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27892503

RESUMEN

Trans-translation is a ubiquitous bacterial mechanism for ribosome rescue in the event of translation stalling. Although trans-translation is not essential in several bacterial species, it has been found essential for viability or virulence in a wide range of pathogens. We describe here that trans-translation is essential in the human pathogen Legionella pneumophila, the etiologic agent of Legionnaire's disease (LD), a severe form of nosocomial and community-acquired pneumonia. The ssrA gene coding for tmRNA, the key component of trans-translation, could not be deleted in L. pneumophila. To circumvent this and analyse the consequences of impaired trans-translation, we placed ssrA under the control of a chemical inducer. Phenotypes associated with the inhibition of ssrA expression include growth arrest in rich medium, hampered cell division, and hindered ability to infect eukaryotic cells (amoebae and human macrophages). LD is often associated with failure of antibiotic treatment and death (>10% of clinical cases). Decreasing tmRNA levels led to significantly higher sensitivity to ribosome-targeting antibiotics, including to erythromycin. We also detected a higher sensitivity to the transcription inhibitor rifampicin. Both antibiotics are recommended treatments for LD. Thus, interfering with trans-translation may not only halt the infection, but could also potentiate the recommended therapeutic treatments of LD.


Asunto(s)
Legionella pneumophila/genética , Legionella pneumophila/patogenicidad , Biosíntesis de Proteínas , Amoeba/microbiología , Antibacterianos/farmacología , Eritromicina/farmacología , Genes Bacterianos , Humanos , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/crecimiento & desarrollo , Enfermedad de los Legionarios/microbiología , Macrófagos/microbiología , ARN Bacteriano , Ribosomas/efectos de los fármacos , Rifampin/farmacología
18.
Sci Rep ; 6: 36711, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27824140

RESUMEN

Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes.


Asunto(s)
Elementos Transponibles de ADN , Genes Arqueales , Mutagénesis , Pyrococcus furiosus/genética , Animales , Medios de Cultivo , Biblioteca de Genes , Genes Esenciales , Genómica , Homocigoto , Concentración de Iones de Hidrógeno , Insectos , Mutagénesis Insercional , Fenotipo , Poliploidía
19.
Proc Natl Acad Sci U S A ; 113(31): 8813-8, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27432973

RESUMEN

A highly conserved DNA uptake system allows many bacteria to actively import and integrate exogenous DNA. This process, called natural transformation, represents a major mechanism of horizontal gene transfer (HGT) involved in the acquisition of virulence and antibiotic resistance determinants. Despite evidence of HGT and the high level of conservation of the genes coding the DNA uptake system, most bacterial species appear non-transformable under laboratory conditions. In naturally transformable species, the DNA uptake system is only expressed when bacteria enter a physiological state called competence, which develops under specific conditions. Here, we investigated the mechanism that controls expression of the DNA uptake system in the human pathogen Legionella pneumophila We found that a repressor of this system displays a conserved ProQ/FinO domain and interacts with a newly characterized trans-acting sRNA, RocR. Together, they target mRNAs of the genes coding the DNA uptake system to control natural transformation. This RNA-based silencing represents a previously unknown regulatory means to control this major mechanism of HGT. Importantly, these findings also show that chromosome-encoded ProQ/FinO domain-containing proteins can assist trans-acting sRNAs and that this class of RNA chaperones could play key roles in post-transcriptional gene regulation throughout bacterial species.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Transferencia de Gen Horizontal , Legionella pneumophila/genética , ARN Bacteriano/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Perfilación de la Expresión Génica/métodos , Humanos , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/microbiología , Modelos Genéticos , Regulón/genética , Transformación Bacteriana
20.
Sci Rep ; 5: 16033, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26526572

RESUMEN

Natural transformation is the process by which bacteria can actively take up and integrate exogenous DNA thereby providing a source of genetic diversity. Under specific growth conditions the coordinated expression of several genes--a situation referred to as "competence"--allows bacteria to assemble a highly processive and dedicated system that can import high molecular weight DNA. Within the cell these large imported DNA molecules are protected from degradation and brought to the chromosome for recombination. Here, we report elevated expression of mreB during competence in the Gram-negative pathogen Legionella pneumophila. Interestingly a similar observation had previously been reported in the distantly-related Gram-positive organism Bacillus subtilis. MreB is often viewed as the bacterial actin homolog contributing to bacterial morphogenesis by coordinating peptidoglycan-synthesising complexes. In addition MreB is increasingly found to be involved in a growing number of processes including chromosome segregation and motor-driven motility. Using genetic and pharmacological approaches, we examined the possible role of MreB during natural transformation in L. pneumophila. Our data show that natural transformation does not require MreB dynamics and exclude a direct role of MreB filaments in the transport of foreign DNA and its recombination in the chromosome.


Asunto(s)
Actinas/metabolismo , Proteínas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Legionella pneumophila/metabolismo , Actinas/antagonistas & inhibidores , Actinas/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Segregación Cromosómica , Citoesqueleto/efectos de los fármacos , Competencia de la Transformación por ADN/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Genes Bacterianos , Morfogénesis/fisiología , Plásmidos/genética , Plásmidos/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA