Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Eur J Med Chem ; 276: 116707, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39068863

RESUMEN

The 3CL protease (3CLpro, Mpro) plays a key role in the replication of the SARS-CoV-2 and was validated as therapeutic target by the development and approval of specific antiviral drugs (nirmatrelvir, ensitrelvir), inhibitors of this protease. Moreover, its high conservation within the coronavirus family renders it an attractive therapeutic target for the development of anti-coronavirus compounds with broad spectrum activity to control COVID-19 and future coronavirus diseases. Here we report on the design, synthesis and structure-activity relationships of a new series of small covalent reversible inhibitors of the SARS-CoV-2 3CLpro. As elucidated thanks to the X-Ray structure of some inhibitors with the 3CLpro, the mode of inhibition involves acylation of the thiol of the catalytic cysteine. The synthesis of 60 analogs led to the identification of compound 56 that inhibits the SARS-CoV-2 3CLpro with high potency (IC50 = 70 nM) and displays antiviral activity in cells (EC50 = 3.1 µM). Notably, compound 56 inhibits the 3CLpro of three other human coronaviruses and exhibit a good selectivity against two human cysteine proteases. These results demonstrate the potential of this electrophilic N-acylbenzimidazole series as a basis for further optimization.


Asunto(s)
Antivirales , Bencimidazoles , Proteasas 3C de Coronavirus , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Relación Estructura-Actividad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Humanos , Bencimidazoles/farmacología , Bencimidazoles/química , Bencimidazoles/síntesis química , Cisteína Endopeptidasas/metabolismo , Acilación , Cisteína/química , Cisteína/farmacología , Estructura Molecular , Relación Dosis-Respuesta a Droga , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Modelos Moleculares , Diseño de Fármacos , Cristalografía por Rayos X
2.
Commun Biol ; 7(1): 898, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048674

RESUMEN

ABCB4 is located at the canalicular membrane of hepatocytes and is responsible for the secretion of phosphatidylcholine into bile. Genetic variations of this transporter are correlated with rare cholestatic liver diseases, the most severe being progressive familial intrahepatic cholestasis type 3 (PFIC3). PFIC3 patients most often require liver transplantation. In this context of unmet medical need, we developed a high-content screening approach to identify small molecules able to correct ABCB4 molecular defects. Intracellularly-retained variants of ABCB4 were expressed in cell models and their maturation, cellular localization and function were analyzed after treatment with the molecules identified by high-content screening. In total, six hits were identified by high-content screening. Three of them were able to correct the maturation and canalicular localization of two distinct intracellularly-retained ABCB4 variants; one molecule was able to significantly restore the function of two ABCB4 variants. In addition, in silico molecular docking calculations suggest that the identified hits may interact with wild type ABCB4 residues involved in ATP binding/hydrolysis. Our results pave the way for their optimization in order to provide new drug candidates as potential alternative to liver transplantation for patients with severe forms of ABCB4-related diseases, including PFIC3.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Simulación del Acoplamiento Molecular , Humanos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Transporte de Proteínas , Ensayos Analíticos de Alto Rendimiento/métodos , Células HEK293
3.
Electrophoresis ; 45(11-12): 1010-1017, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225719

RESUMEN

In this work, a capillary electrophoresis method was developed as a quality control tool to determine the enantiomeric purity of a series of five chiral compounds evaluated as potential severe acute respiratory syndrome coronavirus 2 3CL protease inhibitors. The first cyclodextrin tested, that is, highly sulfated-ß-cyclodextrin, at 6% (m/v) in a 25 mM phosphate buffer, using a capillary dynamically coated with polyethylene oxide, at an applied voltage of 15 kV and a temperature of 25°C, was found to successfully separate the five derivatives. The limits of detection and quantification were calculated together with the greenness score of the method in order to evaluate the method in terms of analytical and environmental performance. In addition, it is noteworthy that simultaneously high-performance liquid chromatography separation of the enantiomers of the same compounds with two different columns, the amylose tris(3,5-dimethylphenylcarbamate)-coated and the cellulose tris(3,5-dichlorophenylcarbamate)-immobilized on silica stationary phases, was studied. Neither the former stationary phase nor the latter was able to separate all derivatives in a mobile phase consisting of n-heptane/propan-2-ol 80/20 (v/v).


Asunto(s)
SARS-CoV-2 , Estereoisomerismo , Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/análisis , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Cromatografía Capilar Electrocinética Micelar/métodos , Límite de Detección , COVID-19 , Humanos , Betacoronavirus/aislamiento & purificación , Betacoronavirus/química , Cromatografía Líquida de Alta Presión/métodos
4.
J Med Chem ; 66(17): 11732-11760, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37639383

RESUMEN

A novel series of potent agonists of the bile acid receptor TGR5 bearing a dihydropyridone scaffold was developed from a high-throughput screen. Starting from a micromolar hit compound, we implemented an extensive structure-activity-relationship (SAR) study with the synthesis and biological evaluation of 83 analogues. The project culminated with the identification of the potent nanomolar TGR5 agonist 77A. We report the GLP-1 secretagogue effect of our lead compound ex vivo in mouse colonoids and in vivo. In addition, to identify specific features favorable for TGR5 activation, we generated and optimized a three-dimensional quantitative SAR model that contributed to our understanding of our activity profile and could guide further development of this dihydropyridone series.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Factores de Transcripción , Animales , Ratones , Péptido 1 Similar al Glucagón , Ácidos y Sales Biliares
5.
Eur J Med Chem ; 250: 115186, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796300

RESUMEN

Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structural proteins essential for the virus life cycle. Both proteases are recognized as promising drug targets for the development of anti-coronavirus chemotherapy. Aiming at identifying broad spectrum agents for the treatment of COVID-19 but also to fight emergent coronaviruses, we focused on 3CLpro that is well conserved within this viral family. Here we present a high-throughput screening of more than 89,000 small molecules that led to the identification of a new chemotype, potent inhibitor of the SARS-CoV-2 3CLpro. The mechanism of inhibition, the interaction with the protease using NMR and X-Ray, the specificity against host cysteine proteases and promising antiviral properties in cells are reported.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Péptido Hidrolasas , Cisteína Endopeptidasas/metabolismo , Inhibidores de Proteasas/química , Proteasas 3C de Coronavirus , Antivirales/química
6.
Eur J Med Chem ; 228: 113982, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34815130

RESUMEN

Insulin degrading enzyme (IDE) is a zinc metalloprotease that cleaves numerous substrates among which amyloid-ß and insulin. It has been linked through genetic studies to the risk of type-2 diabetes (T2D) or Alzheimer's disease (AD). Pharmacological activation of IDE is an attractive therapeutic strategy in AD. While IDE inhibition gave paradoxal activity in glucose homeostasis, recent studies, in particular in the liver suggest that IDE activators could be also of interest in diabetes. Here we describe the discovery of an original series of IDE activators by screening and structure-activity relationships. Early cellular studies show that hit 1 decreases glucose-stimulating insulin secretion. Docking studies revealed it has an unprecedented extended binding to the polyanion-binding site of IDE. These indole-based pharmacological tools are activators of both Aß and insulin hydrolysis by IDE and could be helpful to explore the multiple roles of IDE.


Asunto(s)
Indoles/farmacología , Insulisina/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Indoles/química , Ratones , Modelos Moleculares , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
7.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641626

RESUMEN

Chemical biology and drug discovery are two scientific activities that pursue different goals but complement each other. The former is an interventional science that aims at understanding living systems through the modulation of its molecular components with compounds designed for this purpose. The latter is the art of designing drug candidates, i.e., molecules that act on selected molecular components of human beings and display, as a candidate treatment, the best reachable risk benefit ratio. In chemical biology, the compound is the means to understand biology, whereas in drug discovery, the compound is the goal. The toolbox they share includes biological and chemical analytic technologies, cell and whole-body imaging, and exploring the chemical space through state-of-the-art design and synthesis tools. In this article, we examine several tools shared by drug discovery and chemical biology through selected examples taken from research projects conducted in our institute in the last decade. These examples illustrate the design of chemical probes and tools to identify and validate new targets, to quantify target engagement in vitro and in vivo, to discover hits and to optimize pharmacokinetic properties with the control of compound concentration both spatially and temporally in the various biophases of a biological system.


Asunto(s)
Descubrimiento de Drogas/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Química Farmacéutica , Diseño de Fármacos , Francia , Humanos , Estructura Molecular , Terapia Molecular Dirigida/métodos , Bibliotecas de Moléculas Pequeñas/química
8.
Angew Chem Int Ed Engl ; 60(48): 25428-25435, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34570415

RESUMEN

The main protease (3CLp) of the SARS-CoV-2, the causative agent for the COVID-19 pandemic, is one of the main targets for drug development. To be active, 3CLp relies on a complex interplay between dimerization, active site flexibility, and allosteric regulation. The deciphering of these mechanisms is a crucial step to enable the search for inhibitors. In this context, using NMR spectroscopy, we studied the conformation of dimeric 3CLp from the SARS-CoV-2 and monitored ligand binding, based on NMR signal assignments. We performed a fragment-based screening that led to the identification of 38 fragment hits. Their binding sites showed three hotspots on 3CLp, two in the substrate binding pocket and one at the dimer interface. F01 is a non-covalent inhibitor of the 3CLp and has antiviral activity in SARS-CoV-2 infected cells. This study sheds light on the complex structure-function relationships of 3CLp and constitutes a strong basis to assist in developing potent 3CLp inhibitors.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antivirales/química , Sitios de Unión , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/química , Evaluación Preclínica de Medicamentos , Pruebas de Sensibilidad Microbiana , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína , SARS-CoV-2/química , Bibliotecas de Moléculas Pequeñas/química , Células Vero
9.
J Chromatogr A ; 1651: 462270, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34087720

RESUMEN

The development of a chiral separation strategy has always been a challenge of crucial importance, particularly in the pharmaceutical field. Chromatographic methods have become popular, particularly High Performance Liquid Chromatography and Supercritical Fluid Chromatography from a preparative scale point of view. A bioactive compound bearing three stereogenic centers was entrusted in our laboratory and the aim of this work was to obtain the complete resolution of the eight stereoisomers. Nine different polysaccharide-based columns were tested in SFC under various carbon dioxide-based mobile phases. The use of a single chiral column Lux Cellulose-2 under 30% 2-PrOH in carbon dioxide, at a flow-rate of 1 mL/min, column temperature of 40°C, 120 bar outlet pressure allowed the obtention of eight peaks. To further improve the resolution of the two last isomers, two columns were serially coupled . The results obtained with the six different combinations are discussed. The tandem column supercritical fluid chromatography has demonstrated to be a useful technique to resolve the eight stereoisomers on Lux Cellulose-2//Cellulose-2 tandem of coupled columns with 30% 2-PrOH in carbon dioxide, at a flow-rate of 1 mL/min, column temperature of 40°C and 120 bar outlet pressure, despite a long analysis time. In order to compare the two methods (i.e supercritical and liquid), chiral liquid chromatography under polar aqueous-organic mode, polar organic mode and normal-phase mode, was implemented. The last mode allowed the full baseline resolution of the eight isomers on Cellulose-5 CSP, with 20% 2-PrOH in n-heptane at a flow-rate of 0.8 mL/min, at 25°C, λ = 220 nm. The limits of detection and of quantification were determined for this method and the best values obtained for isomer 8 were equal to 2.84 and 9.37 nM respectively. Finally, a small-scale preparative separation of the multiple chiral centers compound was implemented on Cellulose-5 CSP within 10% 2-PrOH in n-heptane in order to study the stereoisomer elution order on Cellulose-2, Cellulose-5 and Chiralpak AD-H, under EtOH or 2-PrOH in n-heptane mobile phases, and partial reversal elution orders were observed.


Asunto(s)
Amilosa/análogos & derivados , Cromatografía con Fluido Supercrítico/métodos , Fenilcarbamatos/química , Amilosa/química , Dióxido de Carbono/química , Celulosa/química , Cromatografía Líquida de Alta Presión , Límite de Detección , Polisacáridos/química , Estereoisomerismo , Temperatura
10.
Cell Metab ; 33(7): 1483-1492.e10, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33887197

RESUMEN

Bile acids (BAs) improve metabolism and exert anti-obesity effects through the activation of the Takeda G protein-coupled receptor 5 (TGR5) in peripheral tissues. TGR5 is also found in the brain hypothalamus, but whether hypothalamic BA signaling is implicated in body weight control and obesity pathophysiology remains unknown. Here we show that hypothalamic BA content is reduced in diet-induced obese mice. Central administration of BAs or a specific TGR5 agonist in these animals decreases body weight and fat mass by activating the sympathetic nervous system, thereby promoting negative energy balance. Conversely, genetic downregulation of hypothalamic TGR5 expression in the mediobasal hypothalamus favors the development of obesity and worsens established obesity by blunting sympathetic activity. Lastly, hypothalamic TGR5 signaling is required for the anti-obesity action of dietary BA supplementation. Together, these findings identify hypothalamic TGR5 signaling as a key mediator of a top-down neural mechanism that counteracts diet-induced obesity.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Peso Corporal/genética , Metabolismo Energético/genética , Células HEK293 , Humanos , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/genética , Obesidad/prevención & control , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/fisiología
11.
Electrophoresis ; 42(17-18): 1810-1817, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33644914

RESUMEN

A capillary electrokinetic chromatography method (CEKC) was developed for complete stereoisomeric separation of a neutral, hydrophobic, multiple chiral center dihydropyridone analogue, a drug candidate proposed in type 2 diabetes treatment. A background electrolyte comprising three cyclodextrins was found to successfully separate the eight isomers. First an anionic cyclodextrin, the SBE-ß-CD, was selected to allow the chiral separation of our neutral compound and partial resolutions of the eight isomers were obtained. Then, the effects of different parameters such as the nature and concentration of the other cyclodextrins added and pH of the buffer were examined. Finally, a triple CD-system consisted of 15 mM SBE-ß-CD plus 15 mM Î³-CD and 40 mM HP-γ-CD in a 50 mM borate background electrolyte at pH 10, was found to successfully separate the eight isomers. Last, the selectivity and limits of detection and quantification were evaluated for this optimized method.


Asunto(s)
Ciclodextrinas/aislamiento & purificación , Aniones , Diabetes Mellitus Tipo 2 , Electroforesis Capilar , Humanos , Estereoisomerismo
12.
J Med Chem ; 64(3): 1593-1610, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33470812

RESUMEN

PEGylation of therapeutic agents is known to improve the pharmacokinetic behavior of macromolecular drugs and nanoparticles. In this work, we performed the conjugation of polyethylene glycols (220-5000 Da) to a series of non-steroidal small agonists of the bile acids receptor TGR5. A suitable anchoring position on the agonist was identified to retain full agonistic potency with the conjugates. We describe herein an extensive structure-properties relationships study allowing us to finely describe the non-linear effects of the PEG length on the physicochemical as well as the in vitro and in vivo pharmacokinetic properties of these compounds. When appending a PEG of suitable length to the TGR5 pharmacophore, we were able to identify either systemic or gut lumen-restricted TGR5 agonists.


Asunto(s)
Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Receptores Acoplados a Proteínas G/agonistas , Animales , Barrera Hematoencefálica/metabolismo , Células CACO-2 , Células HEK293 , Humanos , Hipoglucemiantes/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Polietilenglicoles/química , Receptores Acoplados a Proteínas G/química , Relación Estructura-Actividad
13.
Front Mol Neurosci ; 14: 808603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058750

RESUMEN

The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in close interaction with peripheral organs. While FXR has been reported to be expressed in the brain, its function has not been studied so far. We studied the role of FXR in brain control of energy homeostasis by treating wild-type and FXR-deficient mice by intracerebroventricular (ICV) injection with the reference FXR agonist GW4064. Here we show that pharmacological activation of brain FXR modifies energy homeostasis by affecting brown adipose tissue (BAT) function. Brain FXR activation decreases the rate-limiting enzyme in catecholamine synthesis, tyrosine hydroxylase (TH), and consequently the sympathetic tone. FXR activation acts by inhibiting hypothalamic PKA-CREB induction of TH expression. These findings identify a function of brain FXR in the control of energy homeostasis and shed new light on the complex control of energy homeostasis by BA through FXR.

14.
Eur J Med Chem ; 179: 557-566, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31276900

RESUMEN

Insulin-degrading enzyme, IDE, is a metalloprotease implicated in the metabolism of key peptides such as insulin, glucagon, ß-amyloid peptide. Recent studies have pointed out its broader role in the cell physiology. In order to identify new drug-like inhibitors of IDE with optimal pharmacokinetic properties to probe its multiple roles, we ran a high-throughput drug repurposing screening. Ebselen, cefmetazole and rabeprazole were identified as reversible inhibitors of IDE. Ebselen is the most potent inhibitor (IC50(insulin) = 14 nM). The molecular mode of action of ebselen was investigated by biophysical methods. We show that ebselen induces the disorder of the IDE catalytic cleft, which significantly differs from the previously reported IDE inhibitors. IDE inhibition by ebselen can explain some of its reported activities in metabolism as well as in neuroprotection.


Asunto(s)
Azoles/farmacología , Reposicionamiento de Medicamentos , Inhibidores Enzimáticos/farmacología , Insulisina/antagonistas & inhibidores , Compuestos de Organoselenio/farmacología , Azoles/química , Biocatálisis , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Insulisina/metabolismo , Isoindoles , Estructura Molecular , Compuestos de Organoselenio/química , Relación Estructura-Actividad
15.
J Chromatogr A ; 1588: 115-126, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30595432

RESUMEN

Chromatographic separation of compounds with more than one chiral center is challenging, requiring high resolution methods. Owing to the low viscosity of the mobile phase, Supercritical Fluid Chromatography (SFC) enables the tandem coupling of columns which increases resolution compared over a single column and can be effective in resolving stereoisomers. Enantioseparation of a dihydropyridone derivative with two chiral centers, synthetic API, was here studied using SFC. Six polysaccharide-based, chiral stationary phases with a mobile phase consisting of a carbon dioxide/methanol mixture (80:20 v:v) were investigated at 40 °C and a flow-rate of 3 mL/min, but only incomplete separation of the four expected stereoisomers was observed. We then examined different combinations of columns in tandem. It was found that, among the thirteen successful tandems, the OJ-H//AD-H system gave complete baseline resolution of the four stereoisomers with 4.98, 5.63, 6.06 and 6.89 as retention times and 2.97, 1.83 and 3.54 as resolution values. The conditions were further optimized to obtain the best resolution in the shortest elution time. The best conditions were transposed to semi-preparative scale to obtain the pure isomers, with yield increased by using stacked injections. The four fractions allowed the attribution of elution order on all tandem performed previously. The column order itself had no impact on the stereoisomeric elution order but the type of stationary phase and column order strongly influenced the resolution. In parallel, a previously reported mathematical model was used to predict the retention times of the four stereoisomers on each of the six polysaccharide-based, chiral stationary phase column tandems. This mathematical model was successfully applied to predict separation the dihydropyridone derivative's isomers on two columns with chlorinated stationary phases.


Asunto(s)
Técnicas de Química Analítica/métodos , Cromatografía con Fluido Supercrítico , Dióxido de Carbono/química , Simulación por Computador , Modelos Químicos , Polisacáridos/química , Estereoisomerismo
16.
J Chromatogr A ; 1549: 39-50, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29573784

RESUMEN

For analytical applications, SFC has always remained in the shadow of LC. Analytical enantioseparation of eight dihydropyridone derivatives, was run in both High Performance Liquid Chromatography and Supercritical Fluid Chromatography. Four polysaccharide based chiral stationary phases namely amylose and cellulose tris(3, 5-dimethylphenylcarbamate), amylose tris((S)-α-phenylethylcarbamate) and cellulose tris(4-methylbenzoate) with four mobile phases consisted of either n-hexane/ethanol or propan-2-ol (80:20 v:v) or carbon dioxide/ethanol or propan-2-ol (80:20 v:v) mixtures were investigated under same operatory conditions (temperature and flow-rate). The elution strength, enantioselectivity and resolution were compared in the two methodologies. For these compounds, for most of the conditions, HPLC afforded shorter retention times and a higher resolution than SFC. HPLC appears particularly suitable for the separation of the compounds bearing two chiral centers. For instance compound 7 was baseline resolved on OD-H CSP under n-Hex/EtOH 80/20, with resolution values equal to 2.98, 1.55, 4.52, between the four stereoisomers in less than 17 min, whereas in SFC, this latter is not fully separated in 23 min under similar eluting conditions. After analytical screenings, the best conditions were transposed to semi-preparative scale.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cromatografía con Fluido Supercrítico/métodos , Dihidropiridinas/química , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Amilosa/química , Benzoatos/química , Celulosa/análogos & derivados , Celulosa/química , Hexanos/química , Límite de Detección , Estereoisomerismo , Temperatura
17.
Electrophoresis ; 38(15): 1922-1931, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28432793

RESUMEN

CD capillary electrophoresis methods were developed for complete enantiomeric and diastereoisomeric separations of a series of ten dihydropyridone analogues, of which eight were neutral, one was anionic, and one was cationic. Ten different systems comprising one or two CDs were found to successfully separate the isomers thanks to a screening approach. Among the tested CDs, highly sulfated-γ-CD (HS-γ-CD), either in a single or in a dual system, in a phosphate buffer using capillaries dynamically coated with polyethylene oxide, and SBE-ß-CD, either in a single or in a dual system, in a borate buffer using uncoated capillaries, were the most selective selectors. The effects of different parameters such as the nature and concentration of the CDs, nature and concentration of the buffer, and voltage were examined. The precision and LODs and limits of quantification were evaluated for the optimized methods.


Asunto(s)
Ciclodextrinas/química , Electroforesis Capilar/métodos , Piridonas/aislamiento & purificación , Boratos , Electroforesis Capilar/instrumentación , Límite de Detección , Modelos Químicos , Fosfatos , Piridonas/análisis , Piridonas/química , Reproducibilidad de los Resultados , Estereoisomerismo
18.
J Med Chem ; 60(10): 4185-4211, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28414465

RESUMEN

The role of the G-protein-coupled bile acid receptor TGR5 in various organs, tissues, and cell types, specifically in intestinal endocrine L-cells and brown adipose tissue, has made it a promising therapeutical target in several diseases, especially type-2 diabetes and metabolic syndrome. However, recent studies have shown deleterious on-target effects of systemic TGR5 agonists. To avoid these systemic effects while stimulating glucagon-like peptide-1 (GLP-1) secreting enteroendocrine L-cells, we have designed TGR5 agonists with low intestinal permeability. In this article, we describe their synthesis, characterization, and biological evaluation. Among them, compound 24 is a potent GLP-1 secretagogue, has low effect on gallbladder volume, and improves glucose homeostasis in a preclinical murine model of diet-induced obesity and insulin resistance, making the proof of concept of the potential of topical intestinal TGR5 agonists as therapeutic agents in type-2 diabetes.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Imidazoles/química , Imidazoles/farmacología , Receptores Acoplados a Proteínas G/agonistas , Aminación , Animales , Células CACO-2 , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Hipoglucemiantes/farmacocinética , Imidazoles/farmacocinética , Absorción Intestinal , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/metabolismo
19.
Nat Commun ; 6: 8250, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26394692

RESUMEN

Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-ß. Knockout and genetic studies have linked IDE to Alzheimer's disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisingly impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.


Asunto(s)
Ácidos Hidroxámicos/síntesis química , Insulisina/antagonistas & inhibidores , Triazoles/síntesis química , Animales , Células CACO-2 , Dominio Catalítico , Diabetes Mellitus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Prueba de Tolerancia a la Glucosa , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos , Terapia Molecular Dirigida , Distribución Aleatoria , Relación Estructura-Actividad , Triazoles/farmacología , Triazoles/uso terapéutico
20.
Cell Metab ; 22(3): 418-26, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26235421

RESUMEN

The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Ácido Quenodesoxicólico/farmacología , Metabolismo Energético/efectos de los fármacos , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Administración Oral , Adulto , Células Cultivadas , Ácido Quenodesoxicólico/administración & dosificación , Ácido Quenodesoxicólico/sangre , Femenino , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...