Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
2.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509561

RESUMEN

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Asunto(s)
Calcio , Trastornos Mieloproliferativos , Humanos , Fura-2 , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Transducción de Señal , Mutación , Receptores de Eritropoyetina/genética , Janus Quinasa 2/genética
3.
Sci Rep ; 14(1): 2810, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308077

RESUMEN

Myeloproliferative neoplasms (MPNs) encompass a diverse group of hematologic disorders driven by mutations in JAK2, CALR, or MPL. The prevailing working model explaining how these driver mutations induce different disease phenotypes is based on the decisive influence of the cellular microenvironment and the acquisition of additional mutations. Here, we report increased levels of chromatin segregation errors in hematopoietic cells stably expressing CALRdel52 or JAK2V617F mutations. Our investigations employing murine 32DMPL and human erythroleukemic TF-1MPL cells demonstrate a link between CALRdel52 or JAK2V617F expression and a compromised spindle assembly checkpoint (SAC), a phenomenon contributing to error-prone mitosis. This defective SAC is associated with imbalances in the recruitment of SAC factors to mitotic kinetochores upon CALRdel52 or JAK2V617F expression. We show that JAK2 mutant CD34 + MPN patient-derived cells exhibit reduced expression of the master mitotic regulators PLK1, aurora kinase B, and PP2A catalytic subunit. Furthermore, the expression profile of mitotic regulators in CD34 + patient-derived cells allows to faithfully distinguish patients from healthy controls, as well as to differentiate primary and secondary myelofibrosis from essential thrombocythemia and polycythemia vera. Altogether, our data suggest alterations in mitotic regulation as a potential driver in the pathogenesis in MPN.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Animales , Humanos , Ratones , Calreticulina/genética , Calreticulina/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrosis Primaria/genética , Microambiente Tumoral
4.
Stem Cell Reports ; 19(2): 224-238, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38278152

RESUMEN

The myeloproliferative disease polycythemia vera (PV) driven by the JAK2 V617F mutation can transform into myelofibrosis (post-PV-MF). It remains an open question how JAK2 V617F in hematopoietic stem cells induces MF. Megakaryocytes are major players in murine PV models but are difficult to study in the human setting. We generated induced pluripotent stem cells (iPSCs) from JAK2 V617F PV patients and differentiated them into megakaryocytes. In differentiation assays, JAK2 V617F iPSCs recapitulated the pathognomonic skewed megakaryocytic and erythroid differentiation. JAK2 V617F iPSCs had a TPO-independent and increased propensity to differentiate into megakaryocytes. RNA sequencing of JAK2 V617F iPSC-derived megakaryocytes reflected a proinflammatory, profibrotic phenotype and decreased ribosome biogenesis. In three-dimensional (3D) coculture, JAK2 V617F megakaryocytes induced a profibrotic phenotype through direct cell contact, which was reversed by the JAK2 inhibitor ruxolitinib. The 3D coculture system opens the perspective for further disease modeling and drug discovery.


Asunto(s)
Células Madre Pluripotentes Inducidas , Policitemia Vera , Humanos , Ratones , Animales , Médula Ósea/patología , Megacariocitos , Janus Quinasa 2/genética , Policitemia Vera/genética , Policitemia Vera/patología , Fenotipo , Fibrosis , Mutación
5.
Cell Rep ; 43(1): 113608, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38117649

RESUMEN

The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.


Asunto(s)
Antineoplásicos , Trastornos Mieloproliferativos , Neoplasias , Humanos , Ratones , Animales , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Leucocitos Mononucleares/metabolismo , Hematopoyesis
6.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38139386

RESUMEN

Myeloproliferative neoplasms (MPN) are rare hematologic disorders characterized by clonal hematopoiesis. Familial clustering is observed in a subset of cases, with a notable proportion exhibiting heterozygous germline mutations in DNA double-strand break repair genes (e.g., BRCA1). We investigated the therapeutic potential of targeting BRCA1 haploinsufficiency alongside the JAK2V617F driver mutation. We assessed the efficacy of combining the PARP inhibitor olaparib with interferon-alpha (IFNα) in CRISPR/Cas9-engineered Brca1+/- Jak2V617F-positive 32D cells. Olaparib treatment induced a higher number of DNA double-strand breaks, as demonstrated by γH2AX analysis through Western blot (p = 0.024), flow cytometry (p = 0.013), and confocal microscopy (p = 0.071). RAD51 foci formation was impaired in Brca1+/- cells compared to Brca1+/+ cells, indicating impaired homologous recombination repair due to Brca1 haploinsufficiency. Importantly, olaparib enhanced apoptosis while diminishing cell proliferation and viability in Brca1+/- cells compared to Brca1+/+ cells. These effects were further potentiated by IFNα. Olaparib induced interferon-stimulated genes and increased endogenous production of IFNα in Brca1+/- cells. These responses were abrogated by STING inhibition. In conclusion, our findings suggest that the combination of olaparib and IFNα presents a promising therapeutic strategy for MPN patients by exploiting the synthetic lethality between germline BRCA1 mutations and the JAK2V617F MPN driver mutation.


Asunto(s)
Proteína BRCA1 , Trastornos Mieloproliferativos , Neoplasias , Humanos , Proteína BRCA1/genética , ADN , Células Germinativas , Haploinsuficiencia , Interferón-alfa/farmacología , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Neoplasias/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN por Recombinación , Mutaciones Letales Sintéticas
7.
Front Oncol ; 13: 1277453, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941547

RESUMEN

Imetelstat shows activity in patients with myeloproliferative neoplasms, including primary myelofibrosis (PMF) and essential thrombocythemia. Here, we describe a case of prolonged disease stabilization by imetelstat treatment of a high-risk PMF patient enrolled into the clinical study MYF2001. We confirmed continuous shortening of telomere length (TL) by imetelstat treatment but observed emergence and expansion of a KRAST58I mutated clone during the patient's clinical course. In order to investigate the molecular mechanisms involved in the imetelstat treatment response, we generated induced pluripotent stem cells (iPSC) from this patient. TL of iPSC-derived hematopoietic stem and progenitor cells, which was increased after reprogramming, was reduced upon imetelstat treatment for 14 days. However, while imetelstat reduced clonogenic growth of the patient's primary CD34+ cells, clonogenic growth of iPSC-derived CD34+ cells was not affected, suggesting that TL was not critically short in these cells. Also, the propensity of iPSC differentiation toward megakaryocytes and granulocytes was not altered. Using human TF-1MPL and murine 32DMPL cell lines stably expressing JAK2V617F or CALRdel52, imetelstat-induced reduction of viability was significantly more pronounced in CALRdel52 than in JAK2V617F cells. This was associated with an immediate downregulation of JAK2 phosphorylation and downstream signaling as well as a reduction of hTERT and STAT3 mRNA expression. Hence, our data demonstrate that imetelstat reduces TL and targets JAK/STAT signaling, particularly in CALR-mutated cells. Although the exact patient subpopulation who will benefit most from imetelstat needs to be defined, our data propose that CALR-mutated clones are highly vulnerable.

8.
Front Pharmacol ; 14: 1212392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469867

RESUMEN

The management of patients with chronic myeloid leukemia (CML) has been revolutionized by the introduction of tyrosine kinase inhibitors (TKIs), which induce deep molecular responses so that treatment can eventually be discontinued, leading to treatment-free remission (TFR) in a subset of patients. Unfortunately, leukemic stem cells (LSCs) often persist and a fraction of these can again expand in about half of patients that attempt TKI discontinuation. In this study, we show that presence of myelofibrosis (MF) at the time of diagnosis is a factor associating with TFR failure. Fibrotic transformation is governed by the action of several cytokines, and interestingly, some of them have also been described to support LSC persistence. At the cellular level, these could be produced by both malignant cells and by components of the bone marrow (BM) niche, including megakaryocytes (MKs) and mesenchymal stromal cells (MSCs). In our cohort of 57 patients, around 40% presented with MF at diagnosis and the number of blasts in the peripheral blood and BM was significantly elevated in patients with higher grade of MF. Employing a CML transgenic mouse model, we could observe higher levels of alpha-smooth muscle actin (α-SMA) in the BM when compared to control mice. Short-term treatment with the TKI nilotinib, efficiently reduced spleen weight and BCR::ABL1 mRNA levels, while α-SMA expression was only partially reduced. Interestingly, the number of MKs was increased in the spleen of CML mice and elevated in both BM and spleen upon nilotinib treatment. Analysis of human CML-vs healthy donor (HD)-derived MSCs showed an altered expression of gene signatures reflecting fibrosis as well as hematopoietic support, thus suggesting MSCs as a potential player in these two processes. Finally, in our cohort, 12 patients qualified for TKI discontinuation, and here we observed that all patients who failed TFR had BM fibrosis at diagnosis, whereas this was only the case in 25% of patients with achieved TFR, further supporting the link between fibrosis and LSC persistence.

9.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982353

RESUMEN

Mast cells (MCs) represent a population of hematopoietic cells with a key role in innate and adaptive immunity and are well known for their detrimental role in allergic responses. Yet, MCs occur in low abundance, which hampers their detailed molecular analysis. Here, we capitalized on the potential of induced pluripotent stem (iPS) cells to give rise to all cells in the body and established a novel and robust protocol for human iPS cell differentiation toward MCs. Relying on a panel of systemic mastocytosis (SM) patient-specific iPS cell lines carrying the KIT D816V mutation, we generated functional MCs that recapitulate SM disease features: increased number of MCs, abnormal maturation kinetics and activated phenotype, CD25 and CD30 surface expression and a transcriptional signature characterized by upregulated expression of innate and inflammatory response genes. Therefore, human iPS cell-derived MCs are a reliable, inexhaustible, and close-to-human tool for disease modeling and pharmacological screening to explore novel MC therapeutics.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mastocitosis Sistémica , Humanos , Mastocitosis Sistémica/diagnóstico , Mastocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Mutación
11.
Trop Med Infect Dis ; 7(12)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36548671

RESUMEN

Malaria is one of the deadliest tropical diseases, especially causing havoc in children under the age of five in Africa. Although the disease is treatable, the rapid development of drug resistant parasites against frontline drugs requires the search for novel antimalarials. In this study, we tested a series of organosulfur compounds from our internal library for their antiplasmodial effect against Plasmodium falciparum asexual and sexual blood stages. Some active compounds were also obtained in enantiomerically pure form and tested individually against asexual blood stages of the parasite to compare their activity. Out of the 23 tested compounds, 7 compounds (1, 2, 5, 9, 15, 16, and 17) exhibited high antimalarial activity, with IC50 values in the range from 2.2 ± 0.64 to 5.2 ± 1.95 µM, while the other compounds showed moderate to very low activity. The most active compounds also exhibited high activity against the chloroquine-resistant strain, reduced gametocyte development and were not toxic to non-infected red blood cells and Hela cells, as well as the hematopoietic HEL cell line at concentrations below 50 µM. To determine if the enantiomers of the active compounds display different antimalarial activity, enantiomers of two of the active compounds were separated and their antimalarial activity compared. The results show a higher activity of the (-) enantiomers as compared to their (+) counterparts. Our combined data indicate that organosulfur compounds could be exploited as antimalarial drugs and enantiomers of the active compounds may represent a good starting point for the design of novel drugs to target malaria.

12.
Ann Hematol ; 101(12): 2655-2663, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269400

RESUMEN

Molecular diagnostics moves more into focus as technology advances. In patients with myeloproliferative neoplasms (MPN), identification and monitoring of the driver mutations have become an integral part of diagnosis and monitoring of the disease. In some patients, none of the known driver mutations (JAK2V617F, CALR, MPL) is found, and they are termed "triple negative" (TN). Also, whole-blood variant allele frequency (VAF) of driver mutations may not adequately reflect the VAF in the stem cells driving the disease. We reasoned that colony forming unit (CFU) assay-derived clonogenic cells may be better suited than next-generation sequencing (NGS) of whole blood to detect driver mutations in TN patients and to provide a VAF of disease-driving cells. We have included 59 patients carrying the most common driver mutations in the establishment or our model. Interestingly, cloning efficiency correlated with whole blood VAF (p = 0.0048), suggesting that the number of disease-driving cells correlated with VAF. Furthermore, the clonogenic VAF correlated significantly with the NGS VAF (p < 0.0001). This correlation was lost in patients with an NGS VAF <15%. Further analysis showed that in patients with a VAF <15% by NGS, clonogenic VAF was higher than NGS VAF (p = 0.003), suggesting an enrichment of low numbers of disease-driving cells in CFU assays. However, our approach did not enhance the identification of driver mutations in 5 TN patients. A significant correlation of lactate dehydrogenase (LDH) serum levels with both CFU- and NGS-derived VAF was found. Our results demonstrate that enrichment for clonogenic cells can improve the detection of MPN driver mutations in patients with low VAF and that LDH levels correlate with VAF.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Humanos , Calreticulina/genética , Calreticulina/metabolismo , Frecuencia de los Genes , Mutación , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/genética
13.
Trends Mol Med ; 28(11): 902-905, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36064534

RESUMEN

Mast cells have been implicated as mediators of bone marrow fibrosis and pruritus in myeloproliferative neoplasms (MPNs) with JAK2V617F or calreticulin mutations. We hypothesize that potent KIT inhibitors, already in clinical use for systemic mastocytosis, have therapeutic potential for the treatment of MPNs by directly targeting mast cells.


Asunto(s)
Mastocitosis Sistémica , Trastornos Mieloproliferativos , Humanos , Mastocitos , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Mastocitosis Sistémica/tratamiento farmacológico , Mastocitosis Sistémica/genética , Mutación
15.
Stem Cell Res ; 60: 102732, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35279545

RESUMEN

The receptor tyrosine kinase c-KIT (CD117) has a key role in hematopoiesis and is a marker for endothelial and cardiac progenitor cells. In vivo, deficiency of c-KIT is lethal and therefore using CRISPR/Cas9 editing we generated heterozygous and homozygous c-KIT knockout human embryonic stem cell (ES cell) lines. The c-KIT knockout left ES cell pluripotency unaffected as shown by immunofluorescence and trilineage differentiation potential. Heterozygous and homozygous c-KIT knockouts showed complete loss of exon 17, resulting in ablation of c-KIT protein from the cell surface. c-KIT knockout ES cells provide a valuable tool for further investigating c-KIT biology.


Asunto(s)
Células Madre Embrionarias Humanas , Sistemas CRISPR-Cas/genética , Línea Celular , Heterocigoto , Homocigoto , Células Madre Embrionarias Humanas/metabolismo , Humanos
16.
Cells ; 10(12)2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34944059

RESUMEN

Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematologic malignancies, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), as well as post-PV-MF and post-ET-MF. Progression to more symptomatic disease, such as overt MF or acute leukemia, represents one of the major causes of morbidity and mortality. There are clinically evident but also subclinical types of MPN progression. Clinically evident progression includes evolution from ET to PV, ET to post-ET-MF, PV to post-PV-MF, or pre-PMF to overt PMF, and transformation of any of these subtypes to myelodysplastic neoplasms or acute leukemia. Thrombosis, major hemorrhage, severe infections, or increasing symptom burden (e.g., pruritus, night sweats) may herald progression. Subclinical types of progression may include increases in the extent of bone marrow fibrosis, increases of driver gene mutational allele burden, and clonal evolution. The underlying causes of MPN progression are diverse and can be attributed to genetic alterations and chronic inflammation. Particularly, bystander mutations in genes encoding epigenetic regulators or splicing factors were associated with progression. Finally, comorbidities such as systemic inflammation, cardiovascular diseases, and organ fibrosis may augment the risk of progression. The aim of this review was to discuss types and mechanisms of MPN progression and how their knowledge might improve risk stratification and therapeutic intervention. In view of these aspects, we discuss the potential benefits of early diagnosis using molecular and functional imaging and exploitable therapeutic strategies that may prevent progression, but also highlight current challenges and methodological pitfalls.


Asunto(s)
Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/diagnóstico , Policitemia Vera/genética , Mielofibrosis Primaria/genética , Trombocitemia Esencial/genética , Progresión de la Enfermedad , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia/diagnóstico , Leucemia/genética , Leucemia/terapia , Mutación/genética , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/terapia , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/terapia , Policitemia Vera/diagnóstico , Policitemia Vera/terapia , Mielofibrosis Primaria/diagnóstico , Mielofibrosis Primaria/patología , Mielofibrosis Primaria/terapia , Trombocitemia Esencial/diagnóstico , Trombocitemia Esencial/terapia , Trombosis/diagnóstico , Trombosis/genética , Trombosis/patología
17.
Stem Cell Reports ; 16(11): 2768-2783, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34678208

RESUMEN

Calreticulin (CALR) mutations are driver mutations in myeloproliferative neoplasms (MPNs), leading to activation of the thrombopoietin receptor and causing abnormal megakaryopoiesis. Here, we generated patient-derived CALRins5- or CALRdel52-positive induced pluripotent stem cells (iPSCs) to establish an MPN disease model for molecular and mechanistic studies. We demonstrated myeloperoxidase deficiency in granulocytic cells derived from homozygous CALR mutant iPSCs, rescued by repairing the mutation using CRISPR/Cas9. iPSC-derived megakaryocytes showed characteristics of primary megakaryocytes such as formation of demarcation membrane system and cytoplasmic pro-platelet protrusions. Importantly, CALR mutations led to enhanced megakaryopoiesis and accelerated megakaryocytic development in a thrombopoietin-independent manner. Mechanistically, our study identified differentially regulated pathways in mutated versus unmutated megakaryocytes, such as hypoxia signaling, which represents a potential target for therapeutic intervention. Altogether, we demonstrate key aspects of mutated CALR-driven pathogenesis dependent on its zygosity, and found novel therapeutic targets, making our model a valuable tool for clinical drug screening in MPNs.


Asunto(s)
Calreticulina/genética , Mutación del Sistema de Lectura , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/metabolismo , Trastornos Mieloproliferativos/genética , Calreticulina/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Citometría de Flujo , Perfilación de la Expresión Génica/métodos , Humanos , Megacariocitos/ultraestructura , Microscopía Electrónica de Transmisión , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trombopoyesis/genética
18.
Front Cell Dev Biol ; 9: 667304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368123

RESUMEN

Dendritic cells (DC) are professional antigen-presenting cells that develop from hematopoietic stem cells. Different DC subsets exist based on ontogeny, location and function, including the recently identified proinflammatory DC3 subset. DC3 have the prominent activity to polarize CD8+ T cells into CD8+ CD103+ tissue resident T cells. Here we describe human DC3 differentiated from induced pluripotent stem cells (iPS cells). iPS cell-derived DC3 have the gene expression and surface marker make-up of blood DC3 and polarize CD8+ T cells into CD8+ CD103+ tissue-resident memory T cells in vitro. To test the impact of malignant JAK2 V617F mutation on DC3, we differentiated patient-specific iPS cells with JAK2 V617Fhet and JAK2 V617Fhom mutations into JAK2 V617Fhet and JAK2 V617Fhom DC3. The JAK2 V617F mutation enhanced DC3 production and caused a bias toward erythrocytes and megakaryocytes. The patient-specific iPS cell-derived DC3 are expected to allow studying DC3 in human diseases and developing novel therapeutics.

19.
Ann Hematol ; 100(12): 2943-2956, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34390367

RESUMEN

Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing-associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.


Asunto(s)
Antígenos CD34/genética , Trastornos Mieloproliferativos/genética , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Humanos , Policitemia Vera/genética , Mielofibrosis Primaria/genética , Trombocitemia Esencial/genética
20.
Stem Cell Res ; 55: 102490, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34391098

RESUMEN

The chemokine CXCL4/platelet factor 4 (PF4) gene, a key player in myelofibrosis, was knocked out by CRISPR/Cas9 in induced pluripotent stem cells (iPS cells) of a polycythemia vera (PV) patient with JAK2 V617F mutation. Two CXCL4KO iPS cell lines with and without JAK2 V617F mutation (UKAi002-B-1 and UKAi002-A-1, respectively) were generated. CXCL4KO iPS cells showed deletion of exon 1 and complete loss of CXCL4 protein. Pluripotency of iPS cells was confirmed by expression of pluripotency markers and trilineage differentiation. CXCL4KO iPS cells are expected to provide a valuable tool for investigating the role of CXCL4 in human diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Policitemia Vera , Sistemas CRISPR-Cas/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Policitemia Vera/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA