Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(3): e0193771, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29509794

RESUMEN

The small heat shock protein (sHsp) Hsp22 from Drosophila melanogaster (DmHsp22) is part of the family of sHsps in this diptera. This sHsp is characterized by its presence in the mitochondrial matrix as well as by its preferential expression during ageing. Although DmHsp22 has been demonstrated to be an efficient in vitro chaperone, its function within mitochondria in vivo remains largely unknown. Thus, determining its protein-interaction network (interactome) in the mitochondrial matrix would help to shed light on its function(s). In the present study we combined immunoaffinity conjugation (IAC) with mass spectroscopy analysis of mitochondria from HeLa cells transfected with DmHsp22 in non-heat shock condition and after heat shock (HS). 60 common DmHsp22-binding mitochondrial partners were detected in two independent IACs. Immunoblotting was used to validate interaction between DmHsp22 and two members of the mitochondrial chaperone machinery; Hsp60 and Hsp70. Among the partners of DmHsp22, several ATP synthase subunits were found. Moreover, we showed that expression of DmHsp22 in transiently transfected HeLa cells increased maximal mitochondrial oxygen consumption capacity and ATP contents, providing a mechanistic link between DmHsp22 and mitochondrial functions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Homeostasis/fisiología , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Drosophila melanogaster , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Immunoblotting , Espectrometría de Masas , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Consumo de Oxígeno/fisiología , Termotolerancia/fisiología , Transfección
2.
Cell Metab ; 17(5): 719-30, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23602449

RESUMEN

Mitophagy has been recently described as a mechanism of elimination of damaged organelles. Although the regulation of the amount of mitochondria is a core issue concerning cellular energy homeostasis, the relationship between mitochondrial degradation and energetic activity has not yet been considered. Here, we report that the stimulation of mitochondrial oxidative phosphorylation enhances mitochondrial renewal by increasing its degradation rate. Upon high oxidative phosphorylation activity, we found that the small GTPase Rheb is recruited to the mitochondrial outer membrane. This mitochondrial localization of Rheb promotes mitophagy through a physical interaction with the mitochondrial autophagic receptor Nix and the autophagosomal protein LC3-II. Thus, Rheb-dependent mitophagy contributes to the maintenance of optimal mitochondrial energy production. Our data suggest that mitochondrial degradation contributes to a bulk renewal of the organelle in order to prevent mitochondrial aging and to maintain the efficiency of oxidative phosphorylation.


Asunto(s)
Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Animales , Autofagia/fisiología , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosforilación Oxidativa
3.
Mitochondrion ; 12(1): 100-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21447405

RESUMEN

We assessed the impact of ten mitoactive drugs on the viability and the proliferation of human cancer cells of variable origin and bioenergetics. A validated chemotherapeutic drug, doxorubicin, was used as a gold-standard for comparison. We also looked at the effect of these drugs on Rho(0) cells and on embryonic fibroblasts, both of which rely mainly on glycolysis to generate the vital ATP. The statistical analysis of the area under the curves revealed a cell-type specific response to mitodopant and mitotoxic compounds, in correlation with the contribution of glycolysis to cellular ATP synthesis. These findings indicate that the bioenergetic state of the cell determines in part the impact of mitodopants and mitotoxics on cancer cells viability.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Metabolismo Energético , Ribonucleótidos/farmacología , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Anciano , Aminoimidazol Carboxamida/farmacología , Bupivacaína/análogos & derivados , Bupivacaína/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Levobupivacaína , Masculino
4.
J Exp Zool B Mol Dev Evol ; 316B(3): 188-98, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21462313

RESUMEN

Drosophila simulans possesses three different mitochondrial haplotypes (siI, II and III) that are nonrandomly geographically subdivided with a 3% interhaplogroup variation. The aim of this study was to determine whether perturbation of mitochondrial metabolism and ROS management by temperature variation and mtDNA introgression would influence the development of aerobic capacity and the intensity of oxidative stress in D. simulans at different ages. Environmental temperature divergences during development had few impacts on metabolic capacities. Our data suggested strong functional conservatism of mitochondrial haplotypes between the D. simulans lines studied. This conservatism was expressed by the low divergences in either mitochondrial or ROS buffering enzyme activities, or even markers of ROS damage even after disruption of coevolved genomes. Disruption of coevolved mitochondrial and nuclear genomes through mtDNA introgression induced no clear divergence on metabolic phenotype at any state of development. Reduction of cytochrome c oxidase activity that was observed after introgression of one mitochondrial haplotype will require further investigation to delineate whether it is associated with any modification of mito-nuclear interactions.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/fisiología , Regulación de la Expresión Génica/fisiología , Animales , Biomarcadores , Ciclo del Ácido Cítrico , Drosophila/clasificación , Proteínas de Drosophila/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Femenino , Masculino , Estrés Oxidativo , Temperatura
5.
J Exp Biol ; 213(Pt 10): 1665-75, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20435817

RESUMEN

The overall aim of this study was to (1) evaluate the adaptive value of mitochondrial DNA by comparing mitochondrial performance in populations possessing different haplotypes and distribution, and to (2) evaluate the sensitivity of different enzymes of the electron transport system (ETS) during temperature-induced changes. We measured the impact of temperature of mitochondrial respiration and several key enzymes of mitochondrial metabolism in two mitotypes (siII and siIII) of Drosophila simulans. The temperature dependencies of oxygen consumption for mitochondria isolated from flight muscle was assessed with complex I substrates (pyruvate + malate + proline) and with sn glycerol-3-phosphate (to reduce complex III via glycerophosphate dehydrogenase) in both coupled and uncoupled states. Activities of citrate synthase, cytochrome c oxidase (COX), catalase and aconitase, and the excess capacity of COX at high convergent pathway flux were also measured as a function of temperature. Overall, our results showed that functional differences between the two mitotypes are few. Results suggest that differences between the two mitotypes could hardly explain the temperature-specific differences measured in mitochondria performances. It suggests that some other factor(s) may be driving the maintenance of mitotypes. We also show that the different enzymes of the ETS have different thermal sensitivities. The catalytic capacities of these enzymes vary with temperature changes, and the corresponding involvement of the different steps on mitochondrial regulation probably varies with temperature. For example, the excess COX capacity is low, even non-existent, at high and intermediate temperatures (18 degrees C, 24 degrees C and 28 degrees C) whereas it is quite high at a lower temperature (12 degrees C), suggesting release of respiration control by COX at low temperature.


Asunto(s)
Drosophila/metabolismo , Mitocondrias/metabolismo , Temperatura , Animales , Respiración de la Célula/efectos de los fármacos , Drosophila/efectos de los fármacos , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/metabolismo , Cinética , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Azida Sódica/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...