Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Dis ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39012676

RESUMEN

Quercetin (QC), a naturally occurring bioflavonoid found in various fruits and vegetables, possesses many potential health benefits, primarily attributed to its robust antioxidant properties. The generation of oxidative stress in bone cells is a key modulator of their physiological behavior. Moreover, oxidative stress status influences the pathophysiology of mineralized tissues. Increasing scientific evidence demonstrates that manipulating the redox balance in bone cells might be an effective technique for developing bone disease therapies. The QC antioxidant abilities in skeletal muscle significantly enhance muscle regeneration and reduce muscle atrophy. In addition, QC has been shown to have protective effects against oxidative stress, inflammation, apoptosis, and matrix degradation in tendons, helping to maintain the structural integrity and functionality of tendons. Thus, the antioxidant properties of QC might be crucial for addressing age-related musculoskeletal disorders like osteoporosis, sarcopenia, and tendon-related inflammatory conditions. Understanding how QC influences redox signaling pathways involved in musculoskeletal disorders, including their effect on bone, muscle, and tendon differentiation, might provide insights into the diverse advantages of QC in promoting tissue regeneration and preventing cellular damage. Therefore, this study reviewed the intricate relationship among oxidative stress, inflammation, and tissue repair, affected by the antioxidative abilities of QC, in age-related musculoskeletal tissues to improve the overall health of bones, muscles, and tendons of the skeletal system. Also, reviewing the ongoing clinical trials of QC for musculoskeletal systems is encouraging. Given the positive effect of QC on musculoskeletal health, further scientific investigations and controlled human intervention studies are necessary to explore the therapeutic potential to its optimum strength.

2.
Photochem Photobiol ; 100(4): 946-955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693674

RESUMEN

Diols, characterized by the presence of two hydroxyl groups, form extended hydrogen-bonded networks. Increasing hydrocarbon chain length is known to elevate the viscosity of diols. Given the established influence of viscosity on solvent dynamics, it becomes imperative to comprehend the impact of viscosity on the fluctuation dynamics within diols and establish connections with hydrogen bond formation and breaking dynamics. In this study, we employ two-dimensional infrared spectroscopy to investigate the viscosity dependence of the structural evolution dynamics in three diols with varying chain lengths. Complementing our experimental approach, molecular dynamics simulations are conducted to extract hydrogen bond lifetimes. Our findings reveal a linear correlation between bulk viscosity, solvent fluctuation timescales, and hydrogen bond lifetimes. Notably, the selected diols exhibit the capability to form deep eutectic solvents upon mixing with choline chloride at specific molar ratios. In contrast to molecular solvents like diols, deep eutectic solvents are characterized by the formation of heterogeneous nanodomains, comprising various intercomponent hydrogen-bonded networks. Interestingly, our observations indicate that while the fluctuation dynamics decelerate with increasing bulk viscosity in diol-based deep eutectic solvents, the relationship between viscosity and dynamics is not linear, in contrast to the observed linearity in diols. This nuanced understanding contributes to the broader comprehension of the interplay between viscosity and dynamics in both molecular and deep eutectic solvents.

3.
Int Immunopharmacol ; 132: 111930, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537538

RESUMEN

Long COVID was reported as a multi-systemic condition after the infection of SARS-CoV-2, and more than 65 million people are suffering from this disease. It has been noted that around 10% of severe SARS-CoV-2 infected individuals are suffering from the enduring effects of long COVID. The symptoms of long COVID have also been noted in several mild or asymptomatic SARS-CoV-2 infected individuals. While limited reports on clinical trials investigating new therapeutics for long COVID exist, there is an abundance of scattered information available regarding these trials. This review explores the extensive literature search, and complete clinical trial database search to map the current status of long COVID clinical trials worldwide. The study listed about 110 long COVID clinical trials. In addition to conducting extensive long COVID clinical trials, we have comprehensively presented an overview of the condition, its symptoms, notable manifestations, associated clinical trials, the unique challenges it poses, and our recommendations for addressing long COVID.


Asunto(s)
COVID-19 , Ensayos Clínicos como Asunto , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Humanos , COVID-19/terapia , Tratamiento Farmacológico de COVID-19
4.
J Exp Orthop ; 10(1): 128, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038796

RESUMEN

ChatGPT has quickly popularized since its release in November 2022. Currently, large language models (LLMs) and ChatGPT have been applied in various domains of medical science, including in cardiology, nephrology, orthopedics, ophthalmology, gastroenterology, and radiology. Researchers are exploring the potential of LLMs and ChatGPT for clinicians and surgeons in every domain. This study discusses how ChatGPT can help orthopedic clinicians and surgeons perform various medical tasks. LLMs and ChatGPT can help the patient community by providing suggestions and diagnostic guidelines. In this study, the use of LLMs and ChatGPT to enhance and expand the field of orthopedics, including orthopedic education, surgery, and research, is explored. Present LLMs have several shortcomings, which are discussed herein. However, next-generation and future domain-specific LLMs are expected to be more potent and transform patients' quality of life.

5.
Aging Dis ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37815907

RESUMEN

The aging process is associated with the development of a wide range of degenerative disorders in mammals. These diseases are characterized by a progressive decline in function at multiple levels, including the molecular, cellular, tissue, and organismal. Furthermore, it is responsible for various healthcare costs in developing and developed countries. Sarcopenia is the deterioration in the quality and functionality of muscles, which is extremely concerning as it manages many functions in the human body. This article reviews the molecular crosstalk involved in sarcopenia and the specific roles of many mediator molecules in establishing cross-talk between muscles, bone, and fatty tissues, eventually leading to sarcopenia. Besides, the involvement of various etiological factors, such as neurology, endocrinology, lifestyle, etc., makes it exceedingly difficult for clinicians to develop a coherent hypothesis that may lead to the well-organized management system required to battle this debilitating disease. The several hallmarks contributing to the progression of the disease is a vital question that needs to be addressed to ensure an efficient treatment for sarcopenia patients. Also, the intricate molecular mechanism involved in developing this disease requires more studies. The direct relationship of cellular senescence with aging is one of the pivotal issues contributing to disease pathophysiology. Some patented treatment strategies have been discussed, including drugs undergoing clinical trials and emerging options like miRNA and protein-enclosed extracellular vesicles. A clear understanding of the secretome, including the signaling pathways involved between muscles, bone, and fatty tissues, is extremely beneficial for developing novel therapeutics for curing sarcopenia.

6.
Drug Resist Updat ; 71: 101008, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37757651

RESUMEN

Since the origin of the wild strain of SARS-CoV-2, several variants have emerged, which were designated as VOC, VOI, and VUM from time to time. The Omicron variant is noted as the recent VOC. After the origin of the Omicron variant on November 2021, several subvariants of Omicron have originated subsequently, like BA.1/2, BA.2.75/2.75.2, BA.4/5, BF.7, BQ.1/1.1, XBB.1/1.5, etc. which are circulated throughout the globe. Scientists reported that antibody escape is a common phenomenon observed in all the previous VOCs, VOIs, including Omicron and its subvariants. The mutations in the NTD (N-terminal domain) and RBD (Receptor-binding domain) of the spike of these variants and subvariants are responsible for antibody escape. At the same time, it has been noted that spike RBD mutations have been increasing in the last few months. This review illustrates significant RBD mutations namely R346T, K417N/T, L452R, N460K E484A/K/Q, and N501Y found in the previous emerging SARS-CoV-2 variants, including Omicron and its subvariants in high frequency and their role in antibody evasion and immune evasion. The review also describes the different classes of nAb responsible for antibody escape in SARS-CoV-2 variants and the molecular perspective of the mutation in nAb escape. It will help the future researchers to develop efficient vaccines which can finally prevent the pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutación
8.
J Phys Chem B ; 127(33): 7299-7308, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37561654

RESUMEN

Deep eutectic solvents, promising green alternatives to conventional solvents, consist of a hydrogen bond donor and a hydrogen bond acceptor. The hydrogen bonding components in deep eutectic solvents form an extended hydrogen bonding network, which can be tuned to specific applications by changing the hydrogen bond donors. In this work, we have changed the hydrogen bond donor from a diol to a dicarboxylic acid by systematically replacing a hydroxyl group with an acid group one at a time to investigate the solvation structure and dynamics of the deep eutectic systems. Using a combination of ultrafast vibrational spectroscopy and molecular dynamics simulations, we compared the spectral diffusion and orientational relaxation dynamics of three deep eutectic systems using the vibrational responses of a dissolved anion. Our results indicate that although the solvation structures are marginally different across the systems, distinct differences are present in the solvent fluctuation and solute reorientation dynamics. This work provides a detailed molecular understanding of carboxylic-acid-based deep eutectic systems and how they differ from alcohol-based deep eutectic systems.

11.
J Chem Phys ; 158(11): 114203, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36948840

RESUMEN

Deep eutectic solvent is a mixture of two or more components, mixed in a certain molar ratio, such that the mixture melts at a temperature lower than individual substances. In this work, we have used a combination of ultrafast vibrational spectroscopy and molecular dynamics simulations to investigate the microscopic structure and dynamics of a deep eutectic solvent (1:2 choline chloride: ethylene glycol) at and around the eutectic composition. In particular, we have compared the spectral diffusion and orientational relaxation dynamics of these systems with varying compositions. Our results show that although the time-averaged solvent structures around a dissolved solute are comparable across compositions, both the solvent fluctuations and solute reorientation dynamics show distinct differences. We show that these subtle changes in solute and solvent dynamics with changing compositions arise from the variations in the fluctuations of the different intercomponent hydrogen bonds.

14.
Nutrients ; 15(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36839278

RESUMEN

Skeletal disabilities are a prominent burden on the present population with an increasing life span. Advances in osteopathy have provided various medical support for bone-related diseases, including pharmacological and prosthesis interventions. However, therapeutics and post-surgery complications are often reported due to side effects associated with modern-day therapies. Thus, therapies utilizing natural means with fewer toxic or other side effects are the key to acceptable interventions. Flavonoids constitute a class of bioactive compounds found in dietary supplements, and their pharmacological attributes have been well appreciated. Recently, flavonoids' role is gaining renowned interest for its effect on bone remodeling. A wide range of flavonoids has been found to play a pivotal role in the major bone signaling pathways, such as wingless-related integration site (Wnt)/ß-catenin, bone morphogenetic protein (BMP)/transforming growth factor (TGF)-ß, mitogen-activated protein kinase (MAPK), etc. However, the reduced bioavailability and the absorption of flavonoids are the major limitations inhibiting their use against bone-related complications. Recent utilization of nanotechnological approaches and other delivery methods (biomaterial scaffolds, micelles) to target and control release can enhance the absorption and bioavailability of flavonoids. Thus, we have tried to recapitulate the understanding of the role of flavonoids in regulating signaling mechanisms affecting bone remodeling and various delivery methods utilized to enhance their therapeutical potential in treating bone loss.


Asunto(s)
Proteína Morfogenética Ósea 2 , Flavonoides , Proteína Morfogenética Ósea 2/metabolismo , Flavonoides/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal
16.
Viruses ; 15(1)2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36680207

RESUMEN

The COVID-19 pandemic has created significant concern for everyone. Recent data from many worldwide reports suggest that most infections are caused by the Omicron variant and its sub-lineages, dominating all the previously emerged variants. The numerous mutations in Omicron's viral genome and its sub-lineages attribute it a larger amount of viral fitness, owing to the alteration of the transmission and pathophysiology of the virus. With a rapid change to the viral structure, Omicron and its sub-variants, namely BA.1, BA.2, BA.3, BA.4, and BA.5, dominate the community with an ability to escape the neutralization efficiency induced by prior vaccination or infections. Similarly, several recombinant sub-variants of Omicron, namely XBB, XBD, and XBF, etc., have emerged, which a better understanding. This review mainly entails the changes to Omicron and its sub-lineages due to it having a higher number of mutations. The binding affinity, cellular entry, disease severity, infection rates, and most importantly, the immune evading potential of them are discussed in this review. A comparative analysis of the Delta variant and the other dominating variants that evolved before Omicron gives the readers an in-depth understanding of the landscape of Omicron's transmission and infection. Furthermore, this review discusses the range of neutralization abilities possessed by several approved antiviral therapeutic molecules and neutralizing antibodies which are functional against Omicron and its sub-variants. The rapid evolution of the sub-variants is causing infections, but the broader aspect of their transmission and neutralization has not been explored. Thus, the scientific community should adopt an elucidative approach to obtain a clear idea about the recently emerged sub-variants, including the recombinant variants, so that effective neutralization with vaccines and drugs can be achieved. This, in turn, will lead to a drop in the number of cases and, finally, an end to the pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Mutación , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Evasión Inmune
17.
Pharmacol Rev ; 75(4): 739-757, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36707250

RESUMEN

Over the past few decades, humankind has constantly encountered new viral species that create havoc in the socioeconomic balance worldwide. Among the method to combat these novel viral infections, fast and point-of-care diagnosis is of prime importance to contain the spreading of viral infections. However, most sensitive diagnostic systems for viral infections are time-consuming and require well-trained professionals, making it difficult for the patients. In recent years nanozymes emerged as promising therapeutic and fast diagnostic tools due to their multienzyme-like catalytic performance. Nanozymes can be designed using inorganic or organic components with tailorable physicochemical surface properties, enabling the attachment of various molecules and species on the surface of the nanozyme for specific recognition. In addition to the composition, the multienzyme-like catalytic performance can be modulated by the shape and size of the nanoparticles. Due to their multicatalytic abilities, nanozymes can be used for fast diagnosis and therapy for viral infections. Here we attempt to focus on the insights and recent explorations on the advances in designing various types of nanozymes as a theranostic tool for viral infections. Thus, this review intends to generate interest in the clinical translation of nanozymes as a theranostic tool for viral infections by providing knowledge about the multidisciplinary potential of nanozyme. SIGNIFICANCE STATEMENT: The multienzyme-like properties of nanozymes suggest their role in diagnosing and treating various diseases. Although the potential roles of nanozymes for various viral infections have been studied in the last few decades, no review provides recent explorations on designing various types of nanozymes for the detection and treatment of viral infections. This review provides insights into designing nanozymes to diagnose and treat viral infections, assisting future researchers in developing clinically translatable nanozymes to combat novel viral infections.


Asunto(s)
Nanopartículas , Humanos , Nanopartículas/química , Catálisis , Propiedades de Superficie
18.
Biochemistry ; 62(2): 451-461, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36573496

RESUMEN

The acid-base behavior of amino acids plays critical roles in several biochemical processes. Depending on the interactions with the protein environment, the pKa values of these amino acids shift from their respective solution values. As the side chains interact with the polypeptide backbone, a pH-induced change in the protonation state of aspartic and glutamic acids might significantly influence the structure and stability of a protein. In this work, we have combined two-dimensional infrared spectroscopy and molecular dynamics simulations to elucidate the pH-induced structural changes in an antimicrobial enzyme, lysozyme, over a wide range of pH. Simultaneous measurements of the carbonyl signals arising from the backbone and the acidic side chains provide detailed information about the pH dependence of the local and global structural features. An excellent agreement between the experimental and the computational results allowed us to obtain a residue-specific molecular understanding. Although lysozyme retains the helical structure for the entire pH range, one distinct loop region (residues 65-75) undergoes local structural deformation at low pH. Interestingly, combining our experiments and simulations, we have identified the aspartic acid residues in lysozyme, which are influenced the most/least by pH modulation.


Asunto(s)
Muramidasa , Proteínas , Concentración de Iones de Hidrógeno , Proteínas/química , Aminoácidos , Ácido Aspártico/química
19.
Int J Biol Macromol ; 229: 70-80, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36586649

RESUMEN

In the last two years, the world encountered the SARS-CoV-2 virus, which is still dominating the population due to the absence of a viable treatment. To eradicate the global pandemic, scientists, doctors, and researchers took an exceptionally significant initiative towards the development of effective therapeutics to save many lifes. This review discusses about the single-domain antibodies (sdAbs), also called nanobodies, their structure, and their types against the infections of dreadful SARS-CoV-2 virus. A precise description highlights the nanobodies and their therapeutic application against the other selected viruses. It aims to focus on the extraordinary features of these antibodies compared to the conventional therapeutics like mAbs, convalescent plasma therapy, and vaccines. The stable structure of these nanobodies along with the suitable mechanism of action also confers greater resistance to the evolving variants with numerous mutations. The nanobodies developed against SARS-CoV-2 and its mutant variants have shown the greater neutralization potential than the primitive ones. Engineering of these specialized antibodies by modern biotechnological approaches will surely be more beneficial in treating this COVID-19 pandemic along with certain other viral infections.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Virosis , Humanos , SARS-CoV-2 , COVID-19/terapia , Anticuerpos de Dominio Único/uso terapéutico , Pandemias , Sueroterapia para COVID-19 , Anticuerpos Monoclonales , Anticuerpos Antivirales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico
20.
Folia Microbiol (Praha) ; 68(1): 17-28, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35962276

RESUMEN

The Delta variant is one of the alarming variants of the SARS-CoV-2 virus that have been immensely detrimental and a significant cause of the prolonged pandemic (B.1.617.2). During the SARS-CoV-2 pandemic from December 2020 to October 2021, the Delta variant showed global dominance, and afterwards, the Omicron variant showed global dominance. Delta shows high infectivity rate which accounted for nearly 70% of the cases after December 2020. This review discusses the additional attributes that make the Delta variant so infectious and transmissible. The study also focuses on the significant mutations, namely the L452R and T478K present on the receptor-binding domain of spike (S)-glycoprotein, which confers specific alterations to the Delta variant. Considerably, we have also highlighted other notable factors such as the immune escape, infectivity and re-infectivity, vaccine escape, Ro number, S-glycoprotein stability, cleavage pattern, and its binding affinity with the host cell receptor protein. We have also emphasized clinical manifestations, symptomatology, morbidity, and mortality for the Delta variant compared with other significant SARS-CoV-2 variants. This review will help the researchers to get an elucidative view of the Delta variant to adopt some practical strategies to minimize the escalating spread of the SARS-CoV-2 Delta variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...