Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Injury ; 55(8): 111659, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38917741

RESUMEN

INTRODUCTION: Periprosthetic joint infections (PJIs) are a devastating complication of total hip (THA) and knee (TKA) arthroplasty. The use of novel techniques like multiplex cytokine analysis could contribute immensely to the identification of potential novel biomarkers. PATIENTS AND METHODS: This is a single-centre study of patients that were treated with revision TKA, THA or hemiarthroplasty. Serum's white blood cells (WBCs), erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) and synovial fluid's WBCs, percentage of polymorphonuclear neutrophils (%PMNs) and CRP were measured. Proteomic analysis targeting the secreted cytokines in synovial fluid was conducted using a 73-plex assay panel. The results were statistically compared between the septic and aseptic cases and ROC analysis to establish the area under the curve (AUC), sensitivity and specificity of each biomarker. RESULTS: The study included 30 patients (18 revision THA cases; 3 conversion of hemiarthroplasty to THA and 9 revision TKA cases); 14 cases were considered infected, 1 likely infected and 15 not infected. The results showed statistically significant differences (p < 0.05) between infected and not infected cases in serum's ESR, CRP and synovial fluid's%PMNs, growth-regulated oncogene alpha (GROA), interleukin-8, interleukin-5, S100-A8/calprotectin and resistin (RETN) with AUCs of 0.75, 0.72, 0.95, 0.75, 0.72, 0.95, 0.83, 0.73, 0.75, 0.81 and 0.76 respectively. CONCLUSIONS: In the present study, serum ESR and CRP as well as synovial %PMNs, GROA, IL-8, IL-5, calprotectin and RETN protein levels were identified as potential biomarkers. Further studies are needed to further investigate their diagnostic utility and optimal cut-off values.

2.
Regen Biomater ; 11: rbae033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845855

RESUMEN

Biofabrication techniques allow for the construction of biocompatible and biofunctional structures composed from biomaterials, cells and biomolecules. Bioprinting is an emerging 3D printing method which utilizes biomaterial-based mixtures with cells and other biological constituents into printable suspensions known as bioinks. Coupled with automated design protocols and based on different modes for droplet deposition, 3D bioprinters are able to fabricate hydrogel-based objects with specific architecture and geometrical properties, providing the necessary environment that promotes cell growth and directs cell differentiation towards application-related lineages. For the preparation of such bioinks, various water-soluble biomaterials have been employed, including natural and synthetic biopolymers, and inorganic materials. Bioprinted constructs are considered to be one of the most promising avenues in regenerative medicine due to their native organ biomimicry. For a successful application, the bioprinted constructs should meet particular criteria such as optimal biological response, mechanical properties similar to the target tissue, high levels of reproducibility and printing fidelity, but also increased upscaling capability. In this review, we highlight the most recent advances in bioprinting, focusing on the regeneration of various tissues including bone, cartilage, cardiovascular, neural, skin and other organs such as liver, kidney, pancreas and lungs. We discuss the rapidly developing co-culture bioprinting systems used to resemble the complexity of tissues and organs and the crosstalk between various cell populations towards regeneration. Moreover, we report on the basic physical principles governing 3D bioprinting, and the ideal bioink properties based on the biomaterials' regenerative potential. We examine and critically discuss the present status of 3D bioprinting regarding its applicability and current limitations that need to be overcome to establish it at the forefront of artificial organ production and transplantation.

3.
J Funct Biomater ; 15(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786628

RESUMEN

The in vitro evaluation of 3D scaffolds for bone tissue engineering in mono-cultures is a common practice; however, it does not represent the native complex nature of bone tissue. Co-cultures of osteoblasts and osteoclasts, without the addition of stimulating agents for monitoring cellular cross-talk, remains a challenge. In this study, a growth factor-free co-culture of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and human peripheral blood mononuclear cells (hPBMCs) has been established and used for the evaluation of 3D-printed scaffolds for bone tissue engineering. The scaffolds were produced from PLLA/PCL/PHBV polymeric blends, with two composite materials produced through the addition of 2.5% w/v nanohydroxyapatite (nHA) or strontium-substituted nanohydroxyapatite (Sr-nHA). Cell morphology data showed that hPBMCs remained undifferentiated in co-culture, while no obvious differences were observed in the mono- and co-cultures of hBM-MSCs. A significantly increased alkaline phosphatase (ALP) activity and osteogenic gene expression was observed in co-culture on Sr-nHA-containing scaffolds. Tartrate-resistant acid phosphatase (TRAP) activity and osteoclastogenic gene expression displayed significantly suppressed levels in co-culture on Sr-nHA-containing scaffolds. Interestingly, mono-cultures of hPBMCs on Sr-nHA-containing scaffolds indicated a delay in osteoclasts formation, as evidenced from TRAP activity and gene expression, demonstrating that strontium acts as an osteoclastogenesis inhibitor. This co-culture study presents an effective 3D model to evaluate the regenerative capacity of scaffolds for bone tissue engineering, thus minimizing time-consuming and costly in vivo experiments.

4.
Biomolecules ; 14(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397463

RESUMEN

Antimicrobial resistance (AMR) poses a significant global health risk as a consequence of misuse of antibiotics. Owing to the increasing antimicrobial resistance, it became imperative to develop novel molecules and materials with antimicrobial properties. Porphyrins and metalloporphyrins are compounds which present antimicrobial properties especially after irradiation. As a consequence, porphyrinoids have recently been utilized as antimicrobial agents in antimicrobial photodynamic inactivation in bacteria and other microorganisms. Herein, we report the encapsulation of porphyrins into peptide hydrogels which serve as delivery vehicles. We selected the self-assembling Fmoc-Phe-Phe dipeptide, a potent gelator, as a scaffold due to its previously reported biocompatibility and three different water-soluble porphyrins as photosensitizers. We evaluated the structural, mechanical and in vitro degradation properties of these hydrogels, their interaction with NIH3T3 mouse skin fibroblasts, and we assessed their antimicrobial efficacy against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria. We found out that the hydrogels are cytocompatible and display antimicrobial efficiency against both strains with the zinc porphyrins being more efficient. Therefore, these hydrogels present a promising alternative for combating bacterial infections in the face of growing AMR concerns.


Asunto(s)
Antiinfecciosos , Fluorenos , Porfirinas , Animales , Ratones , Porfirinas/farmacología , Porfirinas/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli , Staphylococcus aureus , Hidrogeles/farmacología , Células 3T3 NIH , Farmacorresistencia Bacteriana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Dipéptidos/farmacología
5.
Biomater Adv ; 157: 213737, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211506

RESUMEN

Graphitic carbon nitride (g-C3N4) is explored as a novel sustainable visible light photoinitiator for the preparation of biomimetic 3D hydrogel scaffolds comprising gelatin methacrylamide (GelMA) and dopamine methacrylamide for use in tissue engineering. The initiator efficiency was assessed by comparing the swelling behavior and the stability of photopolymerized hydrogels prepared with GelMA of different degrees of functionalization and different comonomer compositions. Bioactive composite hydrogels with a 50 wt% nanohydroxyapatite (nHAp) content, to closely mimic the actual bone composition, were successfully obtained by the introduction of nHAp in the prepolymer solutions followed by photopolymerization. The composite hydrogels demonstrated enhanced mechanical properties and excellent stability in PBS verifying the preparation of robust 3D scaffolds for use in cancellous or pre-calcified bone tissue engineering applications. The in vitro cell response of the composite scaffolds exhibited high cell viability and enhanced differentiation of pre-osteoblasts to mature osteoblasts, demonstrating their osteogenic potential. This work establishes, for the first time, the excellent properties of g-C3N4 as a sustainable, visible light initiator, fully satisfying the principles of green chemistry, for the preparation of robust and biologically relevant hydrogels, and proposes a new approach to overcome the main challenges of conventional photoinitiators in cell scaffold fabrication, such as photobleaching, high cost and non-scalable synthesis employing toxic organic precursors and solvents.


Asunto(s)
Acrilamidas , Biomimética , Grafito , Compuestos de Nitrógeno , Pirenos , Ingeniería de Tejidos , Luz , Hidrogeles
6.
Gels ; 9(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38131970

RESUMEN

In this work, a sodium alginate-based copolymer grafted by thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains was used as gelator (Alg-g-PNIPAM) in combination with methylcellulose (MC). It was found that the mechanical properties of the resulting gel could be enhanced by the addition of MC and calcium ions (Ca2+). The proposed network is formed via a dual crosslinking mechanism including ionic interactions among Ca2+ and carboxyl groups and secondary hydrophobic associations of PNIPAM chains. MC was found to further reinforce the dynamic moduli of the resulting gels (i.e., a storage modulus of ca. 1500 Pa at physiological body and post-printing temperature), rendering them suitable for 3D printing in biomedical applications. The polymer networks were stable and retained their printed fidelity with minimum erosion as low as 6% for up to seven days. Furthermore, adhered pre-osteoblastic cells on Alg-g-PNIPAM/MC printed scaffolds presented 80% viability compared to tissue culture polystyrene control, and more importantly, they promoted the osteogenic potential, as indicated by the increased alkaline phosphatase activity, calcium, and collagen production relative to the Alg-g-PNIPAM control scaffolds. Specifically, ALP activity and collagen secreted by cells were significantly enhanced in Alg-g-PNIPAM/MC scaffolds compared to the Alg-g-PNIPAM counterparts, demonstrating their potential in bone tissue engineering.

7.
Nanomaterials (Basel) ; 13(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37368310

RESUMEN

Nanohydroxyapatite (nanoHA) is the major mineral component of bone. It is highly biocompatible, osteoconductive, and forms strong bonds with native bone, making it an excellent material for bone regeneration. However, enhanced mechanical properties and biological activity for nanoHA can be achieved through enrichment with strontium ions. Here, nanoHA and nanoHA with a substitution degree of 50 and 100% of calcium with strontium ions (Sr-nanoHA_50 and Sr-nanoHA_100, respectively) were produced via wet chemical precipitation using calcium, strontium, and phosphorous salts as starting materials. The materials were evaluated for their cytotoxicity and osteogenic potential in direct contact with MC3T3-E1 pre-osteoblastic cells. All three nanoHA-based materials were cytocompatible, featured needle-shaped nanocrystals, and had enhanced osteogenic activity in vitro. The Sr-nanoHA_100 indicated a significant increase in the alkaline phosphatase activity at day 14 compared to the control. All three compositions revealed significantly higher calcium and collagen production up to 21 days in culture compared to the control. Gene expression analysis exhibited, for all three nanoHA compositions, a significant upregulation of osteonectin and osteocalcin on day 14 and of osteopontin on day 7 compared to the control. The highest osteocalcin levels were found for both Sr-substituted compounds on day 14. These results demonstrate the great osteoinductive potential of the produced compounds, which can be exploited to treat bone disease.

8.
Bioengineering (Basel) ; 10(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237602

RESUMEN

The application of mechanical stimulation on bone tissue engineering constructs aims to mimic the native dynamic nature of bone. Although many attempts have been made to evaluate the effect of applied mechanical stimuli on osteogenic differentiation, the conditions that govern this process have not yet been fully explored. In this study, pre-osteoblastic cells were seeded on PLLA/PCL/PHBV (90/5/5 wt.%) polymeric blend scaffolds. The constructs were subjected every day to cyclic uniaxial compression for 40 min at a displacement of 400 µm, using three frequency values, 0.5, 1, and 1.5 Hz, for up to 21 days, and their osteogenic response was compared to that of static cultures. Finite element simulation was performed to validate the scaffold design and the loading direction, and to assure that cells inside the scaffolds would be subjected to significant levels of strain during stimulation. None of the applied loading conditions negatively affected the cell viability. The alkaline phosphatase activity data indicated significantly higher values at all dynamic conditions compared to the static ones at day 7, with the highest response being observed at 0.5 Hz. Collagen and calcium production were significantly increased compared to static controls. These results indicate that all of the examined frequencies substantially promoted the osteogenic capacity.

9.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047438

RESUMEN

This study aims to investigate the impact of kappa-carrageenan on dental pulp stem cells (DPSCs) behavior in terms of biocompatibility and odontogenic differentiation potential when it is utilized as a component for the production of 3D sponge-like scaffolds. For this purpose, we prepared three types of scaffolds by freeze-drying (i) kappa-carrageenan/chitosan/gelatin enriched with KCl (KCG-KCl) as a physical crosslinker for the sulfate groups of kappa-carrageenan, (ii) kappa-carrageenan/chitosan/gelatin (KCG) and (iii) chitosan/gelatin (CG) scaffolds as a control. The mechanical analysis illustrated a significantly higher elastic modulus of the cell-laden scaffolds compared to the cell-free ones after 14 and 28 days with values ranging from 25 to 40 kPa, showing an increase of 27-36%, with the KCG-KCl scaffolds indicating the highest and CG the lowest values. Cell viability data showed a significant increase from days 3 to 7 and up to day 14 for all scaffold compositions. Significantly increasing alkaline phosphatase (ALP) activity has been observed over time in all three scaffold compositions, while the KCG-KCl scaffolds indicated significantly higher calcium production after 21 and 28 days compared to the CG control. The gene expression analysis of the odontogenic markers DSPP, ALP and RunX2 revealed a two-fold higher upregulation of DSPP in KCG-KCl scaffolds at day 14 compared to the other two compositions. A significant increase of the RunX2 expression between days 7 and 14 was observed for all scaffolds, with a significantly higher increase of at least twelve-fold for the kappa-carrageenan containing scaffolds, which exhibited an earlier ALP gene expression compared to the CG. Our results demonstrate that the integration of kappa-carrageenan in scaffolds significantly enhanced the odontogenic potential of DPSCs and supports dentin-pulp regeneration.


Asunto(s)
Quitosano , Andamios del Tejido , Quitosano/metabolismo , Gelatina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Carragenina/farmacología , Pulpa Dental/metabolismo , Células Cultivadas , Biomimética , Células Madre/metabolismo , Regeneración , Diferenciación Celular , Dentina/metabolismo
10.
Med Eng Phys ; 114: 103967, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37030893

RESUMEN

The occurrence of periprosthetic femoral fractures (PFF) has increased in people with osteoporosis due to decreased bone density, poor bone quality, and stress shielding from prosthetic implants. PFF treatment in the elderly is a genuine concern for orthopaedic surgeons as no effective solution currently exists. Therefore, the goal of this study was to determine whether the design of a novel advanced medicinal therapeutic device (AMTD) manufactured from a polymeric blend in combination with a fracture fixation plate in the femur is capable of withstanding physiological loads without failure during the bone regenerative process. This was achieved by developing a finite element (FE) model of the AMTD together with a fracture fixation assembly, and a femur with an implanted femoral stem. The response of both normal and osteoporotic bone was investigated by implementing their respective material properties in the model. Physiological loading simulating the peak load during standing, walking, and stair climbing was investigated. The results showed that the fixation assembly was the prime load bearing component for this configuration of devices. Within the fixation assembly, the bone screws were found to have the highest stresses in the fixation assembly for all the loading conditions. Whereas the stresses within the AMTD were significantly below the maximum yield strength of the device's polymeric blend material. Furthermore, this study also investigated the performance of different fixation assembly materials and found Ti-6Al-4V to be the optimal material choice from those included in this study.


Asunto(s)
Fracturas del Fémur , Fracturas Osteoporóticas , Fracturas Periprotésicas , Humanos , Anciano , Fracturas Osteoporóticas/cirugía , Fijación Interna de Fracturas , Fémur/cirugía , Fracturas del Fémur/cirugía , Tornillos Óseos , Placas Óseas , Fracturas Periprotésicas/cirugía , Análisis de Elementos Finitos , Fenómenos Biomecánicos
11.
Carbohydr Polym ; 312: 120796, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059519

RESUMEN

To overcome the problem of antibiotic resistance and toxicity of synthetic polymers, herein we report the synthesis of biocompatible polymers which can serve as broad spectrum antimicrobials. A regioselective synthetic method was developed to synthesize N-functionalized chitosan polymers having similar degree of substitution of cationic and hydrophobic functionality with different lipophilic chains. We obtained optimum antibacterial effect by utilizing the combination of cationic and longer lipophilic chain in the polymer, against four bacterial strains. Inhibition and killing of bacteria were more pronounced in Gram positive bacteria than in Gram negative bacteria. Growth kinetics and scanning electron microscopy imaging of the polymer treated bacterial cells confirmed the inhibition of bacterial growth, morphological changes in the structure and membrane disruption in the cells as compared to the growth control for each strain. Further investigation into the toxicity and selectivity of the polymers guided us to develop a structure-activity relationship for this class of biocompatible polymers.


Asunto(s)
Antiinfecciosos , Quitosano , Quitosano/farmacología , Quitosano/química , Antibacterianos/química , Antiinfecciosos/farmacología , Relación Estructura-Actividad , Polímeros/química , Bacterias , Pruebas de Sensibilidad Microbiana
12.
Polymers (Basel) ; 15(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36850334

RESUMEN

Bone tissue engineering has emerged as a promising strategy to overcome the limitations of current treatments for bone-related disorders, but the trade-off between mechanical properties and bioactivity remains a concern for many polymeric materials. To address this need, novel polymeric blends of poly-L-lactic acid (PLLA), polycaprolactone (PCL) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) have been explored. Blend filaments comprising PLLA/PCL/PHBV at a ratio of 90/5/5 wt% have been prepared using twin-screw extrusion. The PLLA/PCL/PHBV blends were enriched with nano-hydroxyapatite (nano-HA) and strontium-substituted nano-HA (Sr-nano-HA) to produce composite filaments. Three-dimensional scaffolds were printed by fused deposition modelling from PLLA/PCL/PHBV blend and composite filaments and evaluated mechanically and biologically for their capacity to support bone formation in vitro. The composite scaffolds had a mean porosity of 40%, mean pores of 800 µm, and an average compressive modulus of 32 MPa. Polymer blend and enriched scaffolds supported cell attachment and proliferation. The alkaline phosphatase activity and calcium production were significantly higher in composite scaffolds compared to the blends. These findings demonstrate that thermoplastic polyesters (PLLA and PCL) can be combined with polymers produced via a bacterial route (PHBV) to produce polymer blends with excellent biocompatibility, providing additional options for polymer blend optimization. The enrichment of the blend with nano-HA and Sr-nano-HA powders enhanced the osteogenic potential in vitro.

13.
Gels ; 9(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36826273

RESUMEN

Bioprinting aims to provide new avenues for regenerating damaged human tissues through the controlled printing of live cells and biocompatible materials that can function therapeutically. Polymeric hydrogels are commonly investigated ink materials for 3D and 4D bioprinting applications, as they can contain intrinsic properties relative to those of the native tissue extracellular matrix and can be printed to produce scaffolds of hierarchical organization. The incorporation of nanoscale material additives, such as nanoparticles, to the bulk of inks, has allowed for significant tunability of the mechanical, biological, structural, and physicochemical material properties during and after printing. The modulatory and biological effects of nanoparticles as bioink additives can derive from their shape, size, surface chemistry, concentration, and/or material source, making many configurations of nanoparticle additives of high interest to be thoroughly investigated for the improved design of bioactive tissue engineering constructs. This paper aims to review the incorporation of nanoparticles, as well as other nanoscale additive materials, to printable bioinks for tissue engineering applications, specifically bone, cartilage, dental, and cardiovascular tissues. An overview of the various bioinks and their classifications will be discussed with emphasis on cellular and mechanical material interactions, as well the various bioink formulation methodologies for 3D and 4D bioprinting techniques. The current advances and limitations within the field will be highlighted.

14.
Gels ; 10(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38247741

RESUMEN

Osseous disease accounts for over half of chronic pathologies, but there is a limited supply of autografts, the gold standard; hence, there is a demand for new synthetic biomaterials. Herein, we present the use of a promising, new dairy-derived biomaterial: whey protein isolate (WPI) in the form of hydrogels, modified with the addition of different concentrations of the biotechnologically produced protein-like polymeric substance poly-γ-glutamic acid (γ-PGA) as a potential scaffold for tissue regeneration. Raman spectroscopic analysis demonstrated the successful creation of WPI-γ-PGA hydrogels. A cytotoxicity assessment using preosteoblastic cells demonstrated that the hydrogels were noncytotoxic and supported cell proliferation from day 3 to 14. All γ-PGA-containing scaffold compositions strongly promoted cell attachment and the formation of dense interconnected cell layers. Cell viability was significantly increased on γ-PGA-containing scaffolds on day 14 compared to WPI control scaffolds. Significantly, the cells showed markers of osteogenic differentiation; they synthesised increasing amounts of collagen over time, and cells showed significantly enhanced alkaline phosphatase activity at day 7 and higher levels of calcium for matrix mineralization at days 14 and 21 on the γ-PGA-containing scaffolds. These results demonstrated the potential of WPI-γ-PGA hydrogels as scaffolds for bone regeneration.

15.
Materials (Basel) ; 15(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36556733

RESUMEN

Hydrogels have been used as scaffolds for biomineralization in tissue engineering and regenerative medicine for the repair and treatment of many tissue types. In the present work, we studied an amino acid-based material that is attached to protecting groups and self-assembles into biocompatible and stable nanostructures that are suitable for tissue engineering applications. Specifically, the doubly protected aspartic residue (Asp) with fluorenyl methoxycarbonyl (Fmoc) protecting groups have been shown to lead to the formation of well-ordered fibrous structures. Many amino acids and small peptides which are modified with protecting groups display relatively fast self-assembly and exhibit remarkable physicochemical properties leading to three-dimensional (3D) networks, the trapping of solvent molecules, and forming hydrogels. In this study, the self-assembling fibrous structures are targeted toward calcium binding and act as nucleation points for the binding of the available phosphate groups. The cell viability, proliferation, and osteogenic differentiation of pre-osteoblastic cells cultured on the formed hydrogel under various conditions demonstrate that hydrogel formation in CaCl2 and CaCl2-Na2HPO4 solutions lead to calcium ion binding onto the hydrogels and enrichment with phosphate groups, respectively, rendering these mechanically stable hydrogels osteoinductive scaffolds for bone tissue engineering.

16.
ACS Pharmacol Transl Sci ; 5(11): 1119-1127, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36407953

RESUMEN

Osteosarcoma is a heterogeneous tumor intimately linked to its microenvironment, which promotes its growth and spread. It is generally accompanied by cancer-induced bone pain (CIBP), whose main component is neuropathic pain. The TRPA1 ion channel plays a key role in metastasis and is increasingly expressed in bone cancer. Here, a novel TRPA1 inhibitor is described and tested together with two other known TRPA1 antagonists. The novel lipoyl derivative has been successfully assessed for its ability to reduce human osteosarcoma MG-63 cell viability, motility, and gene expression of the CIBP pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). A putative three-dimensional (3D) model of the inhibitor covalently bound to TRPA1 is also proposed. The in vitro data suggest that the novel inhibitor described here may be highly interesting and stimulating for new strategies to treat osteosarcomas.

17.
Int J Biol Macromol ; 209(Pt B): 1720-1730, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35461864

RESUMEN

Kappa-carrageenan is a biocompatible natural polysaccharide able to form hydrogels for tissue regeneration. In bone tissue engineering, achieving a bioactive microenvironment with appropriate mechanical properties in polysaccharide-based scaffolds remains a challenge. This study aims to fabricate 3D scaffolds comprising kappa-carrageenan, chitosan and gelatin, crosslinked with KCl, and evaluate their mechanical and biological properties for bone tissue engineering. The produced scaffolds include kappa-carrageenan/chitosan (KC), kappa-carrageenan/chitosan/gelatin (KCG), kappa-carrageenan/chitosan/gelatin enriched with KCl (KCG-KCl), and chitosan/gelatin (CG). All scaffolds present degradation rates ranging from 30% weight loss on day 21, pore size distribution in the range of 100-160 µm and porosity above 80%. The Young modulus values range from 9 to 256 kPa, with the KCl-containing KCG scaffolds demonstrating the highest values, validating the role of KCl in the coil to helix transition of kappa-carrageenan leading to firmer structures. In vitro biological evaluation indicates that pre-osteoblasts proliferate significantly from day 3 up to day 14 on all scaffold compositions. The alkaline phosphatase activity shows a significant increase up to day 14. The calcium production displays a constant increase from day 14 up to day 28, proving that all scaffold compositions support the osteogenic differentiation potential.


Asunto(s)
Quitosano , Gelatina , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Carragenina/química , Carragenina/farmacología , Quitosano/química , Gelatina/química , Osteogénesis , Porosidad , Cloruro de Potasio/farmacología , Ingeniería de Tejidos , Andamios del Tejido/química
18.
Biomolecules ; 12(2)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35204786

RESUMEN

The aim of this systematic review was to evaluate the application of potential therapeutic signaling molecules on complete dentin-pulp complex and pulp tissue regeneration in orthotopic and ectopic animal studies. A search strategy was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement in the MEDLINE/PubMed database. Animal studies evaluating the application of signaling molecules to pulpectomized teeth for pulp tissue or dentin-pulp complex regeneration were included. From 2530 identified records, 18 fulfilled the eligibility criteria and were subjected to detailed qualitative analysis. Among the applied molecules, basic fibroblast growth factor, vascular endothelial growth factor, bone morphogenetic factor-7, nerve growth factor, and platelet-derived growth factor were the most frequently studied. The clinical, radiographical and histological outcome measures included healing of periapical lesions, root development, and apical closure, cellular recolonization of the pulp space, ingrowth of pulp-like connective tissue (vascularization and innervation), mineralized dentin-like tissue formation along the internal dentin walls, and odontoblast-like cells in contact with the internal dentin walls. The results indicate that signaling molecules play an important role in dentin/pulp regeneration. However, further studies are needed to determine a more specific subset combination of molecules to achieve greater efficiency towards the desired tissue engineering applications.


Asunto(s)
Dentina , Factor A de Crecimiento Endotelial Vascular , Animales , Pulpa Dental , Regeneración , Ingeniería de Tejidos/métodos
19.
J Colloid Interface Sci ; 608(Pt 3): 3141-3150, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34815083

RESUMEN

Implant infections due to bacterial biofilms constitute a major healthcare challenge today. One way to address this clinical need is to modify the implant surface with an antimicrobial nanomaterial. Among such nanomaterials, nanosilver is arguably the most powerful one, due to its strong and broad antimicrobial activity. However, there is still a lack of understanding on how physicochemical characteristics of nanosilver coatings affect their antibiofilm activity. More specifically, the contributions of silver (Ag)+ ion-mediated vs. contact-based mechanisms to the observed antimicrobial activity are yet to be elucidated. To address this knowledge gap, we produce here nanosilver coatings on substrates by flame aerosol direct deposition that allows for facile control of the coating composition and Ag particle size. We systematically study the effect of (i) nanosilver content in composite Ag silica (SiO2) coatings from 0 (pure SiO2) up to 50 wt%, (ii) the Ag particle size and (iii) the coating thickness on the antibiofilm activity against Staphylococcus aureus (S. aureus), a clinically-relevant pathogen often present on the surface of surgically-installed implants. We show that the Ag+ ion concentration in solution largely drives the observed antibiofilm effect independently of Ag size and coating thickness. Furthermore, co-incubation of both pure SiO2 and nanosilver coatings in the same well also reveals that the antibiofilm effect stems predominantly from the released Ag+ ions, which is especially pronounced for coatings featuring the smallest Ag particle sizes, rather than direct bacterial contact inhibition. We also examine the biocompatibility of the developed nanosilver coatings in terms of pre-osteoblastic cell viability and proliferation, comparing it to that of pure SiO2. This study lays the foundation for the rational design of nanosilver-based antibiofilm implant coatings.


Asunto(s)
Plata , Staphylococcus aureus , Antibacterianos/farmacología , Biopelículas , Materiales Biocompatibles Revestidos/farmacología , Dióxido de Silicio , Plata/farmacología
20.
Mater Sci Eng C Mater Biol Appl ; 129: 112412, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34579921

RESUMEN

Aging populations in developed countries will increase the demand for implantable materials to support tissue regeneration. Whey Protein Isolate (WPI), derived from dairy industry by-products, can be processed into hydrogels with the following desirable properties for applications in tissue engineering: (i) ability to support adhesion and growth of cells; (ii) ease of sterilization by autoclaving and (iii) ease of incorporation of poorly water-soluble drugs with antimicrobial activity, such as phloroglucinol (PG), the fundamental phenolic subunit of marine polyphenols. In this study, WPI hydrogels were enriched with PG at concentrations between 0 and 20% w/v. PG solubilization in WPI hydrogels is far higher than in water. Enrichment with PG did not adversely affect mechanical properties, and endowed antimicrobial activity against a range of bacteria which occur in healthcare-associated infections (HAI). WPI-PG hydrogels supported the growth of, and collagen production by human dental pulp stem cells and - to a lesser extent - of osteosarcoma-derived MG-63 cells. In summary, enrichment of WPI with PG may be a promising strategy to prevent microbial contamination while still promoting stem cell attachment and growth.


Asunto(s)
Antiinfecciosos , Ingeniería de Tejidos , Antiinfecciosos/farmacología , Proliferación Celular , Humanos , Hidrogeles/farmacología , Osteoblastos , Floroglucinol/farmacología , Proteína de Suero de Leche/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...