Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 301(Pt B): 120347, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446486

RESUMEN

Sulfobutylether ß-cyclodextrin (SBE-ß-CD) is a polyanionic cyclic oligosaccharide that contains glucopyranose units forming a torus ring-like structure. SBE-ß-CD is gifted with many favorable properties viz. relatively high solubility (>50 folds compared to ß-CD), improved stability, and biocompatibility that praised SBE-ß-CD as a smart polymer for drug delivery applications. Commercially, SBE-ß-CD is popular by its brand name Captisol®. The present review discusses the structure, properties, and preparation methods of SBE-ß-CD-based inclusion complexes (ICs). Furthermore, we discuss here the preparation and applications of SBE-ß-CD ICs-based nanoparticulate drug delivery systems, which combines the merits of both, ICs (enhanced solubility) and nanoparticles (NPs, targeted therapy). Patents on and FDA-approved Captisol®-enabled products are tabulated in the benefit of readers. The toxicological aspects and current clinical status of SBE-ß-CD or SBE-ß-CD-based products are briefly explained in the present review. In our opinion, the present review would be a pathfinder to allow dissemination of information on SBE-ß-CD.


Asunto(s)
Polímeros de Estímulo Receptivo , beta-Ciclodextrinas , Biopolímeros , Sistemas de Liberación de Medicamentos
2.
ACS Omega ; 7(20): 17270-17294, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35647471

RESUMEN

Three crucial anticancer scaffolds, namely indolin-2-one, 1,3,4-thiadiazole, and aziridine, are explored to synthesize virtually screened target molecules based on the c-KIT kinase protein. The stem cell factor receptor c-KIT was selected as target because most U.S. FDA-approved receptor tyrosine kinase inhibitors bearing the indolin-2-one scaffold profoundly inhibit c-KIT. Molecular hybrids of indolin-2-one with 1,3,4-thiadiazole (IIIa-m) and aziridine (VIa and VIc) were afforded through a modified Schiff base green synthesis using ß-cyclodextrin-SO3H in water as a recyclable proton-donor catalyst. A computational study found that indolin-2,3-dione forms a supramolecular inclusion complex with ß-cyclodextrin-SO3H through noncovalent interactions. A molecular docking study of all the synthesized compounds was executed on the c-KIT kinase domain, and most compounds displayed binding affinities similar to that of Sunitinib. On the basis of the pharmacokinetic significance of the aryl thioether linkage in small molecules, 1,3,4-thiadiazole hybrids (IIIa-m) were extended to a new series of 3-((5-(phenylthio)-1,3,4-thiadiazol-2-yl)imino)indolin-2-ones (IVa-m) via thioetherification using bis(triphenylphosphine)palladium(II)dichloride as the catalyst for C-S bond formation. Target compounds were tested against NCI-60 human cancer cell lines for a single-dose concentration. Among all three series of indolin-2-ones, the majority of compounds demonstrated broad-spectrum activity toward various cancer cell lines. Compounds IVc and VIc were further evaluated for a five-dose anticancer study. Compound IVc showed a potent activity of IC50 = 1.47 µM against a panel of breast cancer cell lines, whereas compound VIc exhibited the highest inhibition for a panel of colon cancer cell lines at IC50 = 1.40 µM. In silico ADME property descriptors of all the target molecules are in an acceptable range. Machine learning algorithms were used to examine the metabolites and phase I and II regioselectivities of compounds IVc and VIc, and the results suggested that these two compounds could be potential leads for the treatment of cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...