Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 195(5): 2843-2862, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36418711

RESUMEN

The incidences of methicillin-resistant strains of Staphylococcus aureus (MRSA) and their survival inside the macrophages are the major attributes of the relapsed infections after antimicrobial therapy, and it is a global problem. In this context, we have previously demonstrated 4-methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC), a Ricinine derivative exhibiting anti-S. aureus and anti-biofilm characteristics by competitively inhibiting uridine monophosphate kinase (UMPK), UDP-N-acetyl muramyl pentapeptide ligase (Mur-F), and peptidyl deformylase, (PDF). In the present study, the stability of this competitive inhibitor MMOXC was evaluated by showing its ability to remain bound to the active sites of UMPK, Mur-F, and PDF even after increasing the incubation time, temperature, pH, and substrate concentration. On growing MRSA in fewer concentrations of MMOXC, these strains could not attain resistance to MMOXC and at the same time distinct reductions in the expression of UMPK, Mur-F, and PDF genes were noted. In vitro, infective models were generated by infecting MRSA to RAW 264.7 and human monocyte-derived macrophage (hMDM) cell lines. In these infected cell lines, in spite of increased nitric oxide synthase (NOS), NADPH-P450 reductase, superoxide dismutase, catalase, and peroxidase activities, the MRSA survived. At 640 µM/ml, the concentration of MMOXC penetrated into these infected cells and obliterated MRSA. While treating uninfected macrophage cell lines with MMOXC, no appreciable effect was observed indicating that MMOXC is the most suitable drug for the treatment of infections caused by MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Resistencia a la Meticilina , Urea/farmacología , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Línea Celular , Pruebas de Sensibilidad Microbiana
2.
Arch Microbiol ; 204(7): 397, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35708833

RESUMEN

Staphylococcus aureus biofilms are the pathogenic factor in the spread of infection and are more pronounced in multidrug-resistant strains of S. aureus, where high expression of proteases is observed. Among various proteases, Serine protease (SspA) and cysteine protease Staphopain B (SspB) are known to play a key role in the biofilm formation and removal of biofilms. In earlier studies, we have reported Dibenzyl (benzo [d] thiazol-2-yl (hydroxy) methyl) phosphonate (DBTMP) exhibits anti-S. aureus and anti-biofilm properties by elevating the expression of the protease. In this study, the effect of DBTMP on the activities of SspA, and SspB of S. aureus was evaluated. The SspA and SspB genes of S. aureus ATCC12600 were sequenced (Genbank accession numbers: MZ456982 and MW574006). In S. aureus active SspA is formed by proteolytic cleavage of immature SspA, to get this mature SspA (mSspA), we have PCR amplified the mSspA sequence from the SspA gene. The mSspA and SspB genes were cloned, expressed, and characterized. The pure recombinant proteins rSspB and rmSspA exhibited a single band in SDS-PAGE with a molecular weight of 40 and 30 KD, respectively. The activities of rmSspA and rSspB are 32.33 and 35.45 Units/mL correspondingly. DBTMP elevated the activities of rmSspA and rSspB by docking with respective enzymes. This compound disrupted the biofilms formed by the multidrug-resistant strains of S. aureus and further prevented biofilm formation. These findings explain that DBTMP possesses anti-S. aureus and anti-biofilm features.


Asunto(s)
Proteasas de Cisteína , Organofosfonatos , Biopelículas , Cisteína , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Organofosfonatos/farmacología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Proteasas/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
3.
Front Immunol ; 12: 612583, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746956

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of immune dysregulation characterized by hyperactivation of the immune system, excessive cytokine secretion and severe systemic inflammation. HLH is classified as familial (FHL) when associated with mutations in PRF1, UNC13D, STX11, and STXBP2 genes. There is limited information available about the clinical and mutational spectrum of FHL patients in Indian population. This study is a retrospective analysis of 101 molecularly characterized FHL patients over the last 10 years from 20 different referral centers in India. FHL2 and FHL3 together accounted for 84% of cases of FHL in our cohort. Patients belonging to different FHL subtypes were indistinguishable based on clinical and biochemical parameters. However, flow cytometry-based assays viz. perforin expression and degranulation assay were found to be specific and sensitive in diagnosis and classification of FHL patients. Molecular characterization of respective genes revealed 76 different disease-causing mutations including 39 (51%) novel mutations in PRF1, UNC13D, STX11, and STXBP2 genes. Overall, survival was poor (28%) irrespective of the age of onset or the type of mutation in our cohort. Altogether, this article sheds light on the current scenario of FHL in India. Our data reveal a wide genetic heterogeneity of FHL in the Indian population and confirms the poor prognosis of FHL. This study also emphasizes that though mutational analysis is important for diagnostic confirmation of FHL, flow cytometry based assays help significantly in rapid diagnosis and functional validation of novel variants identified.


Asunto(s)
Biomarcadores , Susceptibilidad a Enfermedades , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/etiología , Fenotipo , Alelos , Niño , Preescolar , Terapia Combinada , Biología Computacional/métodos , Bases de Datos Genéticas , Manejo de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Femenino , Predisposición Genética a la Enfermedad , Humanos , India , Lactante , Linfohistiocitosis Hemofagocítica/metabolismo , Linfohistiocitosis Hemofagocítica/terapia , Masculino , Mutación , Perforina/genética , Perforina/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Resultado del Tratamiento
4.
3 Biotech ; 5(4): 505-512, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28324552

RESUMEN

Staphylococcus aureus, a natural inhabitant of nasopharyngeal tract, survives mainly as biofilms. Previously we have observed that S. aureus ATCC 12600 grown under anaerobic conditions exhibited high rate of biofilm formation and L-lactate dehydrogenase activity. Thus, the concentration of pyruvate plays a critical role in S. aureus, which is primarily catalyzed by pyruvate kinase (PK). Analyses of the PK gene sequence (JN645815) revealed presence of PknB site in PK gene indicating that phosphorylation may be influencing the functioning of PK. To establish this hypothesis the pure enzymes of S. aureus ATCC 12600 were obtained by expressing these genes in PK 1 and PV 1 (JN695616) clones and passing the cytosolic fractions through nickel metal chelate column. The molecular weights of pure recombinant PK and PknB are 63 and 73 kDa, respectively. The enzyme kinetics of pure PK showed K M of 0.69 ± 0.02 µM, while the K M of PknB for stpks (stpks = NLCNIPCSALLSSDITASVNCAK) substrate was 0.720 ± 0.08 mM and 0.380 ± 0.07 mM for autophosphorylation. The phosphorylated PK exhibited 40 % reduced activity (PK = 0.2 ± 0.015 µM NADH/min/ml to P-PK = 0.12 ± 0.01 µM NADH/min/ml). Elevated synthesis of pyruvate kinase was observed in S. aureus ATCC 12600 grown in anaerobic conditions suggesting that the formed pyruvate is more utilized in the synthesis phase, supporting increased rate of biofilm formation.

5.
Bioinformation ; 10(2): 81-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24616559

RESUMEN

Staphylococcus aureus a natural inhabitant of nasopharyngeal tract mainly survives as biofilms and possess complete Krebs cycle which plays major role in its pathogenesis. This TCA cycle is regulated by Isocitrate dehydrogenase (IDH) we have earlier cloned, sequenced (HM067707), expressed and characterized this enzyme from S. aureus ATCC12600. We have observed only one type of IDH in all the strains of S. aureus which dictates the flow of carbon thereby controlling the virulence and biofilm formation, this phenomenon is variable among bacteria. Therefore in the present study comparative structural and functional analysis of IDH was undertaken. As the crystal structure of S. aureus IDH was not available therefore using the deduced amino sequence of complete gene the 3D structure of IDH was built in Modeller 9v8. The PROCHECK and ProSAweb analysis showed the built structure was close to the crystal structure of Bacillus subtilis. This structure when superimposed with other bacterial IDH structures exhibited extensive structural variations as evidenced from the RMSD values correlating with extensive sequential variations. Only 24% sequence identity was observed with both human NADP dependent IDHs (PDB: 1T09 and 1T0L) and the structural comparative studies indicated extensive structural variations with an RMSD values of 14.284Å and 10.073Å respectively. Docking of isocitrate to both human IDHs and S. aureus IDH structures showed docking scores of -11.6169 and -10.973 respectively clearly indicating higher binding affinity of isocitrate to human IDH.

6.
Appl Biochem Biotechnol ; 169(3): 862-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23288593

RESUMEN

The Krebs cycle dictates oxidative and reductive conditions in Staphylococcus aureus and is mainly regulated by isocitrate dehydrogenase (IDH) which plays pivotal role in the growth and pathogenesis of the bacteria. In the present study, IDH gene from S. aureus ATCC12600 was cloned in the Sma I site of pQE 30 vector; the resultant clone was named as UVIDH1. The insert in the clone was sequenced (accession number HM067707), and the sequence showed complete homology with IDH sequence of other S. aureus strains reported in the database indicating presence of single enzyme in S. aureus, and considerable sequence homology with other bacteria was observed; however, only 24% homology was found with NADP-dependent human IDH. Phylogenetically, the S. aureus IDH showed close identity with Bacillus subtilis and high degree of variability with other bacteria and human IDH. The expression of IDH in the clone UVIDH1 was induced with 1 mM IPTG, and the recombinant IDH was purified by passing through nickel metal chelate column; the purified recombinant IDH showed a single band in SDS-PAGE with a molecular weight of 40 kDa; K(m) and V(max) for isocitrate are 8.2 ± 0.28 and 525 ± 25 µM NADPH/mg/min, respectively, and for cofactor NADP 67.5 ± 2.82 µM and V(max) 50.5 ± 2.12 µM NADPH/mg/min.


Asunto(s)
Proteínas Bacterianas/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Staphylococcus aureus/enzimología , Electroforesis en Gel de Poliacrilamida , Peso Molecular
7.
Protein J ; 31(4): 345-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22528139

RESUMEN

Uridine monophosphate kinase (UMPK) an enzyme of de novo biosynthesis catalyses the formation of UDP and it is involved in cell wall and RNA biosynthesis. In the present study UMPK of Staphylococcus aureus ATCC12600 was characterized. Analysis of purified UMPK by gel filtration chromatography on Sephadex G-200 indicated a molecular weight of 150 kDa and exhibited monomeric form with molecular weight of 25 kDa in SDS-PAGE confirming homohexamer nature of UMPK in solution. The enzyme kinetics of UMPK showed K(m) of 2.80 ± 0.1 µM and Vmax 51.38 ± 1.39 µM of NADH/min/mg. The enzyme exhibited cooperative kinetics with ATP as substrate, as GTP decreased this cooperativity and increased affinity for ATP. The UMPK gene was amplified, sequenced (Accession number: FJ415072), cloned in pQE30 vector and overexpressed in Escherichia coli DH5α. The purified recombinant UMPK showed similar properties of native UMPK. The UMPK gene sequence showed complete homology with pyrH gene sequence of all S. aureus strains reported in the database, the 3D structure of S. aureus UMPK built from the deduced amino acid sequence was super imposed with human UMPK (PDB ID: 1TEV) to find out the structural identity using the MATRAS programme gave an RMSD value 4.24 Å indicating very low homology and extensive structural variations with human UMPK structure. Thus, UMPK may be a potential drug target in the development of antimicrobials.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Nucleósido-Fosfato Quinasa/química , Nucleósido-Fosfato Quinasa/aislamiento & purificación , Staphylococcus aureus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Expresión Génica , Humanos , Cinética , Datos de Secuencia Molecular , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Alineación de Secuencia , Staphylococcus aureus/química , Staphylococcus aureus/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA