Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2307810121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437545

RESUMEN

Treating pregnancy-related disorders is exceptionally challenging because the threat of maternal and/or fetal toxicity discourages the use of existing medications and hinders new drug development. One potential solution is the use of lipid nanoparticle (LNP) RNA therapies, given their proven efficacy, tolerability, and lack of fetal accumulation. Here, we describe LNPs for efficacious mRNA delivery to maternal organs in pregnant mice via several routes of administration. In the placenta, our lead LNP transfected trophoblasts, endothelial cells, and immune cells, with efficacy being structurally dependent on the ionizable lipid polyamine headgroup. Next, we show that LNP-induced maternal inflammatory responses affect mRNA expression in the maternal compartment and hinder neonatal development. Specifically, pro-inflammatory LNP structures and routes of administration curtailed efficacy in maternal lymphoid organs in an IL-1ß-dependent manner. Further, immunogenic LNPs provoked the infiltration of adaptive immune cells into the placenta and restricted pup growth after birth. Together, our results provide mechanism-based structural guidance on the design of potent LNPs for safe use during pregnancy.


Asunto(s)
Células Endoteliales , Feto , Liposomas , Nanopartículas , Femenino , Embarazo , Humanos , Animales , Ratones , ARN Mensajero/genética , Atención Prenatal
2.
PLoS One ; 19(1): e0297821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38295101

RESUMEN

Recent data has characterized human milk cells with unprecedented detail and provided insight into cell populations. While such analysis of freshly expressed human milk has been possible, studies of cell functionality within the infant have been limited to animal models. One commonly used animal model for milk research is the mouse; however, limited data are available describing the composition of mouse milk. In particular, the maternal cells of mouse milk have not been previously characterized in detail, in part due to the difficulty in collecting sufficient volumes of mouse milk. In this study, we have established a method to collect high volumes of mouse milk, isolate cells, and compare the cell counts and types to human milk. Surprisingly, we found that mouse milk cell density is three orders of magnitude higher than human milk. The cell types present in the milk of mice and humans are similar, broadly consisting of mammary epithelial cells and immune cells. These results provide a basis of comparison for mouse and human milk cells and will inform the most appropriate uses of mouse models for the study of human phenomena.


Asunto(s)
Glándulas Mamarias Animales , Leche , Animales , Humanos , Femenino , Glándulas Mamarias Animales/metabolismo , Mama , Células Epiteliales/metabolismo , Leche Humana , Lactancia
3.
Small ; : e2306134, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145340

RESUMEN

During pregnancy, the risk of maternal and fetal adversities increases due to physiological changes, genetic predispositions, environmental factors, and infections. Unfortunately, treatment options are severely limited because many essential interventions are unsafe, inaccessible, or lacking in sufficient scientific data to support their use. One potential solution to this challenge may lie in emerging RNA therapeutics for gene therapy, protein replacement, maternal vaccination, fetal gene editing, and other prenatal treatment applications. In this review, the current landscape of RNA platforms and non-viral RNA delivery technologies that are under active development for administration during pregnancy is explored. Advancements of pregnancy-specific RNA drugs against SARS-CoV-2, Zika, influenza, preeclampsia, and for in-utero gene editing are discussed. Finally, this study highlights bottlenecks that are impeding translation efforts of RNA therapies, including the lack of accurate cell-based and animal models of human pregnancy and concerns related to toxicity and immunogenicity during pregnancy. Overcoming these challenges will facilitate the rapid development of this new class of pregnancy-safe drugs.

4.
Eur J Pharm Biopharm ; 192: 126-135, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838143

RESUMEN

mRNA is a versatile drug molecule with therapeutic applications ranging from protein replacement therapies to in vivo gene engineering. mRNA delivery is often accomplished using lipid nanoparticles, which are formulated via mixing of aqueous and organic solutions. Although this has historically been accomplished by manual mixing for bench scale science, microfluidic mixing is required for scalable continuous manufacturing and batch to batch control. Currently, there is limited understanding on how the mixing process affects mRNA delivery efficacy, particularly in regard to tropism. To address this knowledge gap, we examined the influence of the type of mixing and microfluidic mixing parameters on the performance of lipid nanoparticles in mice. This was accomplished with a Design of Experiment approach using four nanoparticle formulations with varied ionizable lipid chemistry. We found that each formulation required unique optimization of mixing parameters, with the total delivery efficacy of each lipid nanoparticle generated with microfluidics ranging from 100-fold less to 4-fold more than manually mixed LNPs. Further, mixing parameters influenced organ tropism, with the most efficacious formulations disproportionately increasing liver delivery compared to other organs. These data suggest that mixing parameters for lipid nanoparticle production may require optimization for each unique chemical formulation, complicating translational efforts. Further, microfluidic parameters must be chosen carefully to balance overall mRNA delivery efficacy with application-specific tropism requirements.


Asunto(s)
Liposomas , Nanopartículas , Animales , Ratones , ARN Mensajero/genética , Nanopartículas/química , Terapia Genética , ARN Interferente Pequeño/química
5.
ASAIO J ; 69(6): 527-532, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728837

RESUMEN

Heparin anticoagulation increases the bleeding risk during extracorporeal life support (ECLS). This study determined whether factor XII (FXII) silencing using short interfering RNA (siRNA) can provide ECLS circuit anticoagulation without bleeding. Adult male, Sprague-Dawley rats were randomized to four groups (n = 3 each) based on anticoagulant: (1) no anticoagulant, (2) heparin, (3) FXII siRNA, or (4) nontargeting siRNA. Heparin was administered intravenously before and during ECLS. FXII or nontargeting siRNA were administered intravenously 3 days before the initiation of ECLS via lipidoid nanoparticles. The rats were placed on pumped, arteriovenous ECLS for 8 hours or until the blood flow resistance reached three times its baseline resistance. Without anticoagulant, mock-oxygenator resistance tripled within 7 ± 2 minutes. The resistance in the FXII siRNA group did not increase for 8 hours. There were no significant differences in resistance or mock-oxygenator thrombus volume between the FXII siRNA and the heparin groups. However, the bleeding time in the FXII siRNA group (3.4 ± 0.6 minutes) was significantly shorter than that in the heparin group (5.5 ± 0.5 minutes, p < 0.05). FXII silencing using siRNA provided simpler anticoagulation of ECLS circuits with reduced bleeding time as compared to heparin. http://links.lww.com/ASAIO/A937.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trombosis , Animales , Masculino , Ratas , Anticoagulantes , Factor XII/genética , Heparina , Ratas Sprague-Dawley , ARN Interferente Pequeño/genética , Trombosis/etiología , Trombosis/prevención & control
6.
Sci Adv ; 9(4): eade1444, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706177

RESUMEN

Systemic messenger RNA (mRNA) delivery to organs outside the liver, spleen, and lungs remains challenging. To overcome this issue, we hypothesized that altering nanoparticle chemistry and administration routes may enable mRNA-induced protein expression outside of the reticuloendothelial system. Here, we describe a strategy for delivering mRNA potently and specifically to the pancreas using lipid nanoparticles. Our results show that delivering lipid nanoparticles containing cationic helper lipids by intraperitoneal administration produces robust and specific protein expression in the pancreas. Most resultant protein expression occurred within insulin-producing ß cells. Last, we found that pancreatic mRNA delivery was dependent on horizontal gene transfer by peritoneal macrophage exosome secretion, an underappreciated mechanism that influences the delivery of mRNA lipid nanoparticles. We anticipate that this strategy will enable gene therapies for intractable pancreatic diseases such as diabetes and cancer.


Asunto(s)
Células Secretoras de Insulina , Nanopartículas , ARN Mensajero/genética , Lípidos , Macrófagos
7.
Proc Natl Acad Sci U S A ; 119(33): e2207829119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943988

RESUMEN

Although patients generally prefer oral drug delivery to injections, low permeability of the gastrointestinal tract makes this method impossible for most biomacromolecules. One potential solution is codelivery of macromolecules, including therapeutic proteins or nucleic acids, with intestinal permeation enhancers; however, enhancer use has been limited clinically by modest efficacy and toxicity concerns surrounding long-term administration. Here, we hypothesized that plant-based foods, which are well tolerated by the gastrointestinal tract, may contain compounds that enable oral macromolecular absorption without causing adverse effects. Upon testing more than 100 fruits, vegetables, and herbs, we identified strawberry and its red pigment, pelargonidin, as potent, well-tolerated enhancers of intestinal permeability. In mice, an oral capsule formulation comprising pelargonidin and a 1 U/kg dose of insulin reduced blood glucose levels for over 4 h, with bioactivity exceeding 100% relative to subcutaneous injection. Effects were reversible within 2 h and associated with actin and tight junction rearrangement. Furthermore, daily dosing of mice with pelargonidin for 1 mo resulted in no detectable side effects, including weight loss, tissue damage, or inflammatory responses. These data suggest that pelargonidin is an exceptionally effective enhancer of oral protein uptake that may be safe for routine pharmaceutical use.


Asunto(s)
Antocianinas , Fragaria , Absorción Intestinal , Intestinos , Proteínas , Administración Oral , Animales , Antocianinas/química , Antocianinas/farmacología , Fragaria/química , Insulina/administración & dosificación , Insulina/farmacocinética , Absorción Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Ratones , Permeabilidad , Proteínas/administración & dosificación , Proteínas/farmacocinética
8.
Sci Adv ; 8(26): eabm6865, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35767604

RESUMEN

Breast milk is chock-full of nutrients, immunological factors, and cells that aid infant development. Maternal cells are the least studied breast milk component, and their unique properties are difficult to identify using traditional techniques. Here, we characterized the cells in mature-stage breast milk from healthy donors at the protein, gene, and transcriptome levels. Holistic analysis of flow cytometry, quantitative polymerase chain reaction, and single-cell RNA sequencing data identified the predominant cell population as epithelial with smaller populations of macrophages and T cells. Two percent of epithelial cells expressed four stem cell markers: SOX2, TRA-1-60, NANOG, and SSEA4. Furthermore, milk contained six distinct epithelial lactocyte subpopulations, including three previously unidentified subpopulations programmed toward mucosal defense and intestinal development. Pseudotime analysis delineated the differentiation pathways of epithelial progenitors. Together, these data define healthy human maternal breast milk cells and provide a basis for their application in maternal and infant medicine.


Asunto(s)
Leche Humana , Transcriptoma , Diferenciación Celular , Niño , Células Epiteliales/metabolismo , Femenino , Humanos , Células Madre
9.
J Control Release ; 345: 819-831, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35346768

RESUMEN

The broad clinical application of mRNA therapeutics has been hampered by a lack of delivery vehicles that induce protein expression in extrahepatic organs and tissues. Recently, it was shown that mRNA delivery to the spleen or lungs is possible upon the addition of a charged lipid to a standard four-component lipid nanoparticle formulation. This approach, while effective, further complicates an already complex drug formulation and has the potential to slow regulatory approval and adversely impact manufacturing processes. We were thus motivated to maintain a four-component nanoparticle system while achieving shifts in tropism. To that end, we replaced the standard helper lipid in lipidoid nanoparticles, DOPE, with one of eight alternatives. These lipids included the neutral lipids, DOPC, sphingomyelin, and ceramide; the anionic lipids, phosphatidylserine (PS), phosphatidylglycerol, and phosphatidic acid; and the cationic lipids, DOTAP and ethyl phosphatidylcholine. While neutral helper lipids maintained protein expression in the liver, anionic and cationic lipids shifted protein expression to the spleen and lungs, respectively. For example, replacing DOPE with DOTAP increased positive LNP surface charge at pH 7 by 5-fold and altered the ratio of liver to lung protein expression from 36:1 to 1:56. Similarly, replacing DOPE with PS reduced positive charge by half and altered the ratio of liver to spleen protein expression from 8:1 to 1:3. Effects were consistent across ionizable lipidoid chemistries. Regarding mechanism, nanoparticles formulated with neutral and anionic helper lipids best transfected epithelial and immune cells, respectively. Further, the lung-tropic effect of DOTAP was linked to reduced immune cell infiltration of the lungs compared to neutral or anionic lipids. Together, these data show that intravenous non-hepatocellular mRNA delivery is readily achievable while maintaining a four-component formulation with modified helper lipid chemistry.


Asunto(s)
Nanopartículas , Bazo , Cationes , Lípidos , Liposomas , Pulmón , ARN Mensajero/genética
10.
J Control Release ; 341: 206-214, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801660

RESUMEN

Therapeutic mRNA has the potential to revolutionize the treatment of myriad diseases and, in 2020, facilitated the most rapid vaccine development in history. Among the substantial advances in mRNA technology made in recent years, the incorporation of base modifications into therapeutic mRNA sequences can reduce immunogenicity and increase translation. However, experiments from our lab and others have shown that the incorporation of base modifications does not always yield superior protein expression. We hypothesized that the variable benefit of base modifications may relate to lipid nanoparticle chemistry, formulation, and accumulation within specific organs. To test this theory, we compared IV-injected lipid nanoparticles formulated with reporter mRNA incorporating five base modifications (ψ, m1ψ, m5U, m5C/ψ, and m5C/s2U) and four ionizable lipids (C12-200, cKK-E12, ZA3-Ep10, and 200Oi10) with tropism for different organs. In general, the m1ψ base modification best enhanced translation, producing up to 15-fold improvements in total protein expression compared to unmodified mRNA. Expression improved most dramatically in the spleen (up to 50-fold) and was attributed to enhanced protein expression in monocytic lineage splenocytes. The extent to which these effects were observed varied with delivery vehicle and correlated with differences in innate immunogenicity. Through comparison of firefly luciferase and erythropoietin mRNA constructs, we also found that mRNA modification-induced enhancements in protein expression are limited outside of the spleen, irrespective of delivery vehicle. These results highlight the complexity of mRNA-loaded lipid nanoparticle drug design and show that the effectiveness of mRNA base modifications depend on the delivery vehicle, the target cells, and the site of endogenous protein expression.


Asunto(s)
Nanopartículas , Nucleósidos , Lípidos , Liposomas , ARN Mensajero
12.
Nat Rev Drug Discov ; 20(11): 817-838, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34433919

RESUMEN

Over the past several decades, messenger RNA (mRNA) vaccines have progressed from a scepticism-inducing idea to clinical reality. In 2020, the COVID-19 pandemic catalysed the most rapid vaccine development in history, with mRNA vaccines at the forefront of those efforts. Although it is now clear that mRNA vaccines can rapidly and safely protect patients from infectious disease, additional research is required to optimize mRNA design, intracellular delivery and applications beyond SARS-CoV-2 prophylaxis. In this Review, we describe the technologies that underlie mRNA vaccines, with an emphasis on lipid nanoparticles and other non-viral delivery vehicles. We also overview the pipeline of mRNA vaccines against various infectious disease pathogens and discuss key questions for the future application of this breakthrough vaccine platform.


Asunto(s)
COVID-19/prevención & control , Control de Enfermedades Transmisibles , Vacunas Sintéticas , COVID-19/epidemiología , Ensayos Clínicos como Asunto , Control de Enfermedades Transmisibles/métodos , Control de Enfermedades Transmisibles/tendencias , Diseño de Fármacos , Desarrollo de Medicamentos/métodos , Humanos , ARN Mensajero/genética , SARS-CoV-2 , Vacunas Sintéticas/clasificación , Vacunas Sintéticas/farmacología , Vacunas de ARNm
13.
Int J Pharm ; 593: 120120, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33249250

RESUMEN

Oral delivery of macromolecular drugs is the most patient-preferred route of administration because it is painless and convenient. Over the past 30 years, significant attention has been paid to oral protein delivery in adults. Unfortunately, there is an outstanding need for similar efforts in infants, a patient population with distinct intestinal physiology and treatment needs. Here, we assess the intestinal permeability of neonatal and infant mice to determine the feasibility of orally delivering peptide and protein drugs without permeation enhancers or other assistance. Using the non-everted gut sac model, we found that macromolecular permeability depended on molecular size, mouse age, and intestinal tissue type using model dextrans. For example, the apparent permeability of 70 kDa FITC-Dextran (FD70) in infant small intestinal tissue was 2-5-fold higher than in adult tissue. As mice aged, the expression of barrier-forming and pore-forming tight junction proteins increased and decreased, respectively. The in vivo oral absorption of 4 kDa FITC-Dextran (FD4) and FD70 was significantly higher in younger mice, and there was a fourfold increase in oral absorption of the 80 kDa protein lactoferrin compared to adults. Oral gavage of insulin (5 IU/kg) reduced blood glucose levels in infants by >20% at 2 and 3 h but had no effect in adults. Oral insulin had 35% and <1% of the pharmacodynamic effect of a 1 IU/kg subcutaneous dose in infants and adults, as measured by area above the curve. These data indicate that the uniquely leaky nature of the infantile intestine may support the oral delivery of biologics without the need for traditional oral delivery technology.


Asunto(s)
Mucosa Intestinal , Intestino Delgado , Administración Oral , Animales , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Ratones , Péptidos/metabolismo , Permeabilidad , Tecnología
14.
Nano Lett ; 20(7): 5167-5175, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32496069

RESUMEN

The clinical translation of messengerRNA (mRNA) drugs has been slowed by a shortage of delivery vehicles that potently and safely shuttle mRNA into target cells. Here, we describe the properties of a particularly potent branched-tail lipid nanoparticle that delivers mRNA to >80% of three major liver cell types. We characterize mRNA delivery spatially, temporally, and as a function of injection type. Following intravenous delivery, our lipid nanoparticle induced greater protein expression than two benchmark lipids, C12-200 and DLin-MC3-DMA, at an mRNA dose of 0.5 mg/kg. Lipid nanoparticles were sufficiently potent to codeliver three distinct mRNAs (firefly luciferase, mCherry, and erythropoietin) and, separately, Cas9 mRNA and single guide RNA (sgRNA) for proof-of-concept nonviral gene editing in mice. Furthermore, our branched-tail lipid nanoparticle was neither immunogenic nor toxic to the liver. Together, these results demonstrate the unique potential of this lipid material to improve the management of diseases rooted in liver dysfunction.


Asunto(s)
Edición Génica , Nanopartículas , Animales , Técnicas de Transferencia de Gen , Lípidos , Ratones , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA