Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(33): 22275-22297, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105696

RESUMEN

Nanomedicine has long pursued the goal of targeted delivery to specific organs and cell types but has yet to achieve this goal with the vast majority of targets. One rare example of success in this pursuit has been the 25+ years of studies targeting the lung endothelium using nanoparticles conjugated to antibodies against endothelial surface molecules. However, here we show that such "endothelial-targeted" nanocarriers also effectively target the lungs' numerous marginated neutrophils, which reside in the pulmonary capillaries and patrol for pathogens. We show that marginated neutrophils' uptake of many of these "endothelial-targeted" nanocarriers is on par with endothelial uptake. This generalizes across diverse nanomaterials and targeting moieties and was even found with physicochemical lung tropism (i.e., without targeting moieties). Further, we observed this in ex vivo human lungs and in vivo healthy mice, with an increase in marginated neutrophil uptake of nanoparticles caused by local or distant inflammation. These findings have implications for nanomedicine development for lung diseases. These data also suggest that marginated neutrophils, especially in the lungs, should be considered a major part of the reticuloendothelial system (RES), with a special role in clearing nanoparticles that adhere to the lumenal surfaces of blood vessels.


Asunto(s)
Pulmón , Nanopartículas , Neutrófilos , Animales , Neutrófilos/metabolismo , Neutrófilos/inmunología , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Nanopartículas/química , Sistema Mononuclear Fagocítico/metabolismo , Endotelio/metabolismo , Ratones Endogámicos C57BL , Nanomedicina
2.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38602485

RESUMEN

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Asunto(s)
Diferenciación Celular , Vía de Señalización Hippo , Morfogénesis , Miofibroblastos , Proteínas Serina-Treonina Quinasas , Alveolos Pulmonares , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/citología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Morfogénesis/genética , Mesodermo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Pulmón/metabolismo , Organogénesis/genética , Regulación del Desarrollo de la Expresión Génica
4.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37463053

RESUMEN

Optimal lung repair and regeneration are essential for recovery from viral infections, including influenza A virus (IAV). We have previously demonstrated that acute inflammation and mortality induced by IAV is under circadian control. However, it is not known whether the influence of the circadian clock persists beyond the acute outcomes. Here, we utilize the UK Biobank to demonstrate an association between poor circadian rhythms and morbidity from lower respiratory tract infections, including the need for hospitalization and mortality after discharge; this persists even after adjusting for common confounding factors. Furthermore, we use a combination of lung organoid assays, single-cell RNA sequencing, and IAV infection in different models of clock disruption to investigate the role of the circadian clock in lung repair and regeneration. We show that lung organoids have a functional circadian clock and the disruption of this clock impairs regenerative capacity. Finally, we find that the circadian clock acts through distinct pathways in mediating lung regeneration - in tracheal cells via the Wnt/ß-catenin pathway and through IL-1ß in alveolar epithelial cells. We speculate that adding a circadian dimension to the critical process of lung repair and regeneration will lead to novel therapies and improve outcomes.


Asunto(s)
Relojes Circadianos , Virus de la Influenza A , Pulmón/metabolismo , Células Epiteliales Alveolares , Ritmo Circadiano , Relojes Circadianos/genética , Virus de la Influenza A/fisiología , Regeneración
5.
Adv Exp Med Biol ; 1413: 139-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195530

RESUMEN

The structure of the mammalian lung controls the flow of air through the airways and into the distal alveolar region where gas exchange occurs. Specialized cells in the lung mesenchyme produce the extracellular matrix (ECM) and growth factors required for lung structure. Historically, characterizing the mesenchymal cell subtypes was challenging due to their ambiguous morphology, overlapping expression of protein markers, and limited cell-surface molecules needed for isolation. The recent development of single-cell RNA sequencing (scRNA-seq) complemented with genetic mouse models demonstrated that the lung mesenchyme comprises transcriptionally and functionally heterogeneous cell-types. Bioengineering approaches that model tissue structure clarify the function and regulation of mesenchymal cell types. These experimental approaches demonstrate the unique abilities of fibroblasts in mechanosignaling, mechanical force generation, ECM production, and tissue regeneration. This chapter will review the cell biology of the lung mesenchyme and experimental approaches to study their function.


Asunto(s)
Matriz Extracelular , Pulmón , Ratones , Animales , Pulmón/metabolismo , Matriz Extracelular/fisiología , Fibroblastos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mesodermo/metabolismo , Mamíferos
6.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239312

RESUMEN

There is a growing amount of data uncovering the cellular diversity of the pulmonary circulation and mechanisms governing vascular repair after injury. However, the molecular and cellular mechanisms contributing to the morphogenesis and growth of the pulmonary vasculature during embryonic development are less clear. Importantly, deficits in vascular development lead to significant pediatric lung diseases, indicating a need to uncover fetal programs promoting vascular growth. To address this, we used a transgenic mouse reporter for expression of Cxcl12, an arterial endothelial hallmark gene, and performed single-cell RNA sequencing on isolated Cxcl12-DsRed+ endothelium to assess cellular heterogeneity within pulmonary endothelium. Combining cell annotation with gene ontology and histological analysis allowed us to segregate the developing artery endothelium into functionally and spatially distinct subpopulations. Expression of Cxcl12 is highest in the distal arterial endothelial subpopulation, a compartment enriched in genes for vascular development. Accordingly, disruption of CXCL12 signaling led to, not only abnormal branching, but also distal vascular hypoplasia. These data provide evidence for arterial endothelial functional heterogeneity and reveal conserved signaling mechanisms essential for pulmonary vascular development.


Asunto(s)
Endotelio Vascular , Pulmón , Ratones , Embarazo , Animales , Femenino , Endotelio Vascular/metabolismo , Morfogénesis , Ratones Transgénicos , Desarrollo Embrionario
7.
Science ; 371(6534)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33707239

RESUMEN

The lung alveolus is the functional unit of the respiratory system required for gas exchange. During the transition to air breathing at birth, biophysical forces are thought to shape the emerging tissue niche. However, the intercellular signaling that drives these processes remains poorly understood. Applying a multimodal approach, we identified alveolar type 1 (AT1) epithelial cells as a distinct signaling hub. Lineage tracing demonstrates that AT1 progenitors align with receptive, force-exerting myofibroblasts in a spatial and temporal manner. Through single-cell chromatin accessibility and pathway expression (SCAPE) analysis, we demonstrate that AT1-restricted ligands are required for myofibroblasts and alveolar formation. These studies show that the alignment of cell fates, mediated by biophysical and AT1-derived paracrine signals, drives the extensive tissue remodeling required for postnatal respiration.


Asunto(s)
Linaje de la Célula/genética , Epigénesis Genética , Alveolos Pulmonares/embriología , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Animales , Células Cultivadas , Señales (Psicología) , Epigenómica , Humanos , Ratones , Ratones Transgénicos , Miofibroblastos/citología , Miofibroblastos/metabolismo , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , RNA-Seq/métodos , Transducción de Señal , Análisis de la Célula Individual , Transcriptoma
8.
Psychiatr Danub ; 27 Suppl 1: S198-200, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26417761

RESUMEN

Bipolar disorder is a developing disorder; its early stages are sometimes misdiagnosed as anxiety or depressive disorders. At the same time, these disorders are often in comorbidity with bipolar disorder. This complex symptomatology can lead to misinterpretation and underdiagnosis of bipolar disorders, mainly at the earliest stages. Consequently, one of the most important challenges for clinicians is to recognize the non specific early symptoms with the aid of clinical information, for example a family history of bipolar disorder. Furthermore, it is well-known that comorbid anxiety disorders can lead to a worse prognosis in bipolar patients but it is not exactly clear to what extent. A deeper understanding of the relationship between these comorbidities and their stage of development will hopefully lead to better care of patients with bipolar disorder from a younger age.


Asunto(s)
Trastorno Bipolar/diagnóstico , Trastorno Bipolar/psicología , Adolescente , Adulto , Factores de Edad , Trastornos de Ansiedad/diagnóstico , Trastornos de Ansiedad/psicología , Comorbilidad , Diagnóstico Diferencial , Femenino , Humanos , Anamnesis , Desarrollo de la Personalidad , Pronóstico
9.
Immunology ; 132(3): 432-40, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21091908

RESUMEN

The autoimmune enteropathy, coeliac disease (CD), is triggered by ingestion of gluten-containing grains. We recently reported that the chemokine receptor CXCR3 serves as a receptor for specific gliadin peptides that cause zonulin release and subsequent increase in intestinal permeability. To explore the role of CXCR3 in the immune response to gliadin, peripheral blood mononuclear cells from both patients with CD and healthy controls were incubated with either pepsin-trypsin-digested gliadin or 11 α-gliadin synthetic peptides in the presence or absence of a blocking anti-CXCR3 monoclonal antibody. Supernatants were analysed for interleukin-6 (IL-6), IL-8, IL-10, IL-13, IP-10 (CXCL10), tumour necrosis factor-α and interferon-γ. Gliadin broadly induced cytokine production irrespective of the clinical condition. However, IL-8 production occurred only in a subgroup of individuals and cells of the phagocytic lineage were the main source. Induction of IL-8 was reproduced by one of a comprehensive panel of synthetic α-gliadin peptides and was abrogated when CXCR3 was blocked before stimulation with either gliadin or this peptide in the CD group but not in the control group, suggesting that gliadin-induced IL-8 production was CXCR3-dependent gliadin induced IL-8 production only in CD.


Asunto(s)
Enfermedad Celíaca/metabolismo , Gliadina/inmunología , Interleucina-8/biosíntesis , Receptores CXCR3/metabolismo , Enfermedad Celíaca/inmunología , Humanos , Interleucina-8/inmunología , Leucocitos Mononucleares , Péptidos/inmunología , Receptores CXCR3/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...