Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiol Artif Intell ; 6(4): e230431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38775671

RESUMEN

Purpose To develop an artificial intelligence (AI) deep learning tool capable of predicting future breast cancer risk from a current negative screening mammographic examination and to evaluate the model on data from the UK National Health Service Breast Screening Program. Materials and Methods The OPTIMAM Mammography Imaging Database contains screening data, including mammograms and information on interval cancers, for more than 300 000 female patients who attended screening at three different sites in the United Kingdom from 2012 onward. Cancer-free screening examinations from women aged 50-70 years were performed and classified as risk-positive or risk-negative based on the occurrence of cancer within 3 years of the original examination. Examinations with confirmed cancer and images containing implants were excluded. From the resulting 5264 risk-positive and 191 488 risk-negative examinations, training (n = 89 285), validation (n = 2106), and test (n = 39 351) datasets were produced for model development and evaluation. The AI model was trained to predict future cancer occurrence based on screening mammograms and patient age. Performance was evaluated on the test dataset using the area under the receiver operating characteristic curve (AUC) and compared across subpopulations to assess potential biases. Interpretability of the model was explored, including with saliency maps. Results On the hold-out test set, the AI model achieved an overall AUC of 0.70 (95% CI: 0.69, 0.72). There was no evidence of a difference in performance across the three sites, between patient ethnicities, or across age groups. Visualization of saliency maps and sample images provided insights into the mammographic features associated with AI-predicted cancer risk. Conclusion The developed AI tool showed good performance on a multisite, United Kingdom-specific dataset. Keywords: Deep Learning, Artificial Intelligence, Breast Cancer, Screening, Risk Prediction Supplemental material is available for this article. ©RSNA, 2024.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Detección Precoz del Cáncer , Mamografía , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Reino Unido/epidemiología , Persona de Mediana Edad , Mamografía/métodos , Anciano , Detección Precoz del Cáncer/métodos , Medición de Riesgo/métodos , Tamizaje Masivo/métodos , Estudios de Cohortes
3.
Front Mol Biosci ; 10: 1144001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842636

RESUMEN

Introduction: Accurate and rapid diagnostics paired with effective tracking and tracing systems are key to halting the spread of infectious diseases, limiting the emergence of new variants and to monitor vaccine efficacy. The current gold standard test (RT-qPCR) for COVID-19 is highly accurate and sensitive, but is time-consuming, and requires expensive specialised, lab-based equipment. Methods: Herein, we report on the development of a SARS-CoV-2 (COVID-19) rapid and inexpensive diagnostic platform that relies on a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay and a portable smart diagnostic device. Automated image acquisition and an Artificial Intelligence (AI) deep learning model embedded in the Virus Hunter 6 (VH6) device allow to remove any subjectivity in the interpretation of results. The VH6 device is also linked to a smartphone companion application that registers patients for swab collection and manages the entire process, thus ensuring tests are traced and data securely stored. Results: Our designed AI-implemented diagnostic platform recognises the nucleocapsid protein gene of SARS-CoV-2 with high analytical sensitivity and specificity. A total of 752 NHS patient samples, 367 confirmed positives for coronavirus disease (COVID-19) and 385 negatives, were used for the development and validation of the test and the AI-assisted platform. The smart diagnostic platform was then used to test 150 positive clinical samples covering a dynamic range of clinically meaningful viral loads and 250 negative samples. When compared to RT-qPCR, our AI-assisted diagnostics platform was shown to be reliable, highly specific (100%) and sensitive (98-100% depending on viral load) with a limit of detection of 1.4 copies of RNA per µL in 30 min. Using this data, our CE-IVD and MHRA approved test and associated diagnostic platform has been approved for medical use in the United Kingdom under the UK Health Security Agency's Medical Devices (Coronavirus Test Device Approvals, CTDA) Regulations 2022. Laboratory and in-silico data presented here also indicates that the VIDIIA diagnostic platform is able to detect the main variants of concern in the United Kingdom (September 2023). Discussion: This system could provide an efficient, time and cost-effective platform to diagnose SARS-CoV-2 and other infectious diseases in resource-limited settings.

4.
Viruses ; 12(9)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883050

RESUMEN

Until vaccines and effective therapeutics become available, the practical solution to transit safely out of the current coronavirus disease 19 (CoVID-19) lockdown may include the implementation of an effective testing, tracing and tracking system. However, this requires a reliable and clinically validated diagnostic platform for the sensitive and specific identification of SARS-CoV-2. Here, we report on the development of a de novo, high-resolution and comparative genomics guided reverse-transcribed loop-mediated isothermal amplification (LAMP) assay. To further enhance the assay performance and to remove any subjectivity associated with operator interpretation of results, we engineered a novel hand-held smart diagnostic device. The robust diagnostic device was further furnished with automated image acquisition and processing algorithms and the collated data was processed through artificial intelligence (AI) pipelines to further reduce the assay run time and the subjectivity of the colorimetric LAMP detection. This advanced AI algorithm-implemented LAMP (ai-LAMP) assay, targeting the RNA-dependent RNA polymerase gene, showed high analytical sensitivity and specificity for SARS-CoV-2. A total of ~200 coronavirus disease (CoVID-19)-suspected NHS patient samples were tested using the platform and it was shown to be reliable, highly specific and significantly more sensitive than the current gold standard qRT-PCR. Therefore, this system could provide an efficient and cost-effective platform to detect SARS-CoV-2 in resource-limited laboratories.


Asunto(s)
Inteligencia Artificial , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Neumonía Viral/virología , Animales , COVID-19 , Prueba de COVID-19 , Chlorocebus aethiops , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Perros , Humanos , Células de Riñón Canino Madin Darby , Pandemias , Neumonía Viral/diagnóstico , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Sensibilidad y Especificidad , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...