Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 10(11): 4952-4959, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37609955

RESUMEN

Induction heating has been applied for a variety of purposes over the years, including hyperthermia-induced cell death, industrial manufacturing, and heterogeneous catalysis. However, its potential in materials synthesis has not been extensively studied. Herein, we have demonstrated magnetic induction heating-assisted synthesis of core-shell nanoparticles starting from a magnetic core. The induction heating approach allows an easy synthesis of FeNi3@Mo and Fe2.2C@Mo nanoparticles containing a significantly higher amount of molybdenum on the surface than similar materials synthesized using conventional heating. Exhaustive electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy characterization data are presented to establish the core-shell structures. Furthermore, the molybdenum shell was transformed into the Mo2C phase, and the catalytic activity of the resulting nanoparticles tested for the propane dry reforming reaction under induction heating. Lastly, the beneficial role of induction heating-mediated synthesis was extended toward the preparation of the FeNi3@WOx core-shell nanoparticles.

2.
Angew Chem Int Ed Engl ; 62(36): e202308983, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37453077

RESUMEN

We have studied the photoredox-catalyzed hydrogen isotope exchange (HIE) reaction with deuterium or tritium gas as isotope sources and in situ formed transition metal nanoparticles as hydrogen atom transfer pre-catalysts. By this means we have found synergistic reactivities applying two different HIE mechanisms, namely photoredox-catalyzed and CH-functionalization HIE leading to the synthesis of highly deuterated complex molecules. Finally, we adopted these findings successfully to tritium chemistry.

3.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177019

RESUMEN

In the present paper, we compare the activity, selectivity, and stability of a supported nickel catalyst in classical heating conditions and in magnetically activated catalysis by using iron wool as a heating agent. The catalyst, 5 wt% Ni supported on titania (Degussa P25), was prepared via an organometallic decomposition method and was thoroughly characterized by using elemental, microscopic, and diffraction techniques. In the event of magnetic induction heating, the % CO2 conversion reached a maximum of ~85% compared to ~78% for thermal conditions at a slightly lower temperature (~335 °C) than the thermal heating (380 °C). More importantly, both processes were found to be stable for 45 h on stream. Moreover, the effects of magnetic induction and classical heating over the catalyst evolution were discussed. This study demonstrated the potential of magnetic heating-mediated methanation, which is currently under investigation for the development of pilot-scale reactors.

4.
ChemSusChem ; 16(12): e202300009, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36877569

RESUMEN

The reduction of biomass-derived compounds gives access to valuable chemicals from renewable sources, circumventing the use of fossil feedstocks. Herein, we describe the use of iron-nickel magnetic nanoparticles for the reduction of biomass model compounds in aqueous media under magnetic induction. Nanoparticles with a hydrophobic ligand (FeNi3 -PA, PA=palmitic acid) have been employed successfully, and their catalytic performance is intended to improve by ligand exchange with lysine (FeNi3 -Lys and FeNi3 @Ni-Lys NPs) to enhance water dispersibility. All three catalysts have been used to hydrogenate 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan with complete selectivity and almost quantitative yields, using 3 bar of H2 and a magnetic field of 65 mT in water. These catalysts have been recycled up to 10 times maintaining high conversions. Under the same conditions, levulinic acid has been hydrogenated to γ-valerolactone, and 4'-hydroxyacetophenone hydrodeoxygenated to 4-ethylphenol, with conversions up to 70 % using FeNi3 -Lys, and selectivities above 85 % in both cases. This promising catalytic system improves biomass reduction sustainability by avoiding noble metals and expensive ligands, increasing energy efficiency via magnetic induction heating, using low H2 pressure, and proving good reusability while working in an aqueous medium.


Asunto(s)
Nanopartículas del Metal , Agua , Lisina , Biomasa , Ligandos , Nanopartículas del Metal/química , Fenómenos Magnéticos , Catálisis
5.
Inorg Chem ; 62(11): 4570-4580, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36893373

RESUMEN

Ru and Rh nanoparticles catalyze the selective H/D exchange in phosphines using D2 as the deuterium source. The position of the deuterium incorporation is determined by the structure of the P-based substrates, while activity depends on the nature of the metal, the properties of the stabilizing agents, and the type of the substituent on phosphorus. The appropriate catalyst can thus be selected either for the exclusive H/D exchange in aromatic rings or also for alkyl substituents. The selectivity observed in each case provides relevant information on the coordination mode of the ligand. Density functional theory calculations provide insights into the H/D exchange mechanism and reveal a strong influence of the phosphine structure on the selectivity. The isotope exchange proceeds via C-H bond activation at nanoparticle edges. Phosphines with strong coordination through the phosphorus atom such as PPh3 or PPh2Me show preferred deuteration at ortho positions of aromatic rings and at the methyl substituents. This selectivity is observed because the corresponding C-H moieties can interact with the nanoparticle surface while the phosphine is P-coordinated, and the C-H activation results in stable metallacyclic intermediates. For weakly coordinating phosphines such as P(o-tolyl)3, the interaction with the nanoparticle can occur directly through phosphine substituents, and then, other deuteration patterns are observed.

6.
Chem Commun (Camb) ; 59(8): 1062-1065, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36606591

RESUMEN

Labelling of amino-acids is important for the production of deuterated proteins. However, aromatic amino-acid reduction is a common undesired process with noble-metal nanocatalysts. In this work, we describe a new NHC-stabilized water-soluble Pd/Ni system able to perform H/D exchange reactions in an enantiospecific fashion without reducing the aromatic ring of phenylalanine and tyrosine thanks to a synergetic Pd-Ni effect.


Asunto(s)
Aminoácidos Aromáticos , Nanopartículas , Agua , Aminoácidos , Tirosina
7.
ChemSusChem ; 16(1): e202201724, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36379873

RESUMEN

A new selective and efficient catalytic system for magnetically induced catalytic CO2 methanation was developed, composed of an abundant iron-based heating agent, namely a commercial iron wool, combined with supported Nickel nanoparticles (Ni NPs) as catalysts. The effect of metal oxide support was evaluated by preparing different 10 wt % Ni catalyst (TiO2 , ZrO2 , CeO2 , and CeZrO2 ) via organometallic decomposition route. As-prepared catalysts were thoroughly characterized using powder X-ray diffraction, electron microscopy, elemental analysis, vibrating sample magnetometer, and X-ray photoelectron spectroscopy techniques. High conversion and selectivity toward methane were observed at mid-temperature range, hence improving energy efficiency of the process with respect to the previous results under magnetic heating conditions. To gain further insight into the catalytic system, the effects of the synthesis method and of 0.5 wt % Ru doping were evaluated. Finally, the dynamic nature of magnetically induced heating was demonstrated through fast stop-and-go experiments, proving the suitability of this technology for the storage of intermittent renewable energy through P2G process.

8.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234492

RESUMEN

II-V semiconductor nanocrystals such as Cd3P2 and Zn3P2 have enormous potential as materials in next-generation optoelectronic devices requiring active optical properties across the visible and infrared range. To date, this potential has been unfulfilled due to their inherent instability with respect to air and moisture. Core-shell system Cd3P2/Zn3P2 is synthesized and studied from structural (morphology, crystallinity, shell diameter), chemical (composition of core, shell, and ligand sphere), and optical perspectives (absorbance, emission-steady state and time resolved, quantum yield, and air stability). The improvements achieved by coating with Zn3P2 are likely due to its identical crystal structure to Cd3P2 (tetragonal), highlighting the key role crystallographic concerns play in creating cutting edge core-shell NCs.

9.
Angew Chem Int Ed Engl ; 61(35): e202207301, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35708117

RESUMEN

Magnetic nanoparticles (NPs) are attractive both for their fundamental properties and for their potential in a variety of applications ranging from nanomedicine and biology to micro/nanoelectronics and catalysis. While these fields are dominated by the use of iron oxides, reduced metal NPs are of interest since they display high magnetization and adjustable anisotropy according to their size, shape and composition. The use of organometallic precursors makes it possible to adjust the size, shape (sphere, cube, rod, wire, urchin, …) and composition (alloys, core-shell, composition gradient, dumbbell, …) of the resulting NPs and hence their magnetic properties. We discuss here the synthesis of magnetic metal NPs from organometallic precursors carried out in Toulouse, as well as their associated properties and their potential in applications.


Asunto(s)
Magnetismo , Nanopartículas del Metal , Anisotropía , Fenómenos Magnéticos , Nanomedicina/métodos
10.
Nanoscale Horiz ; 7(6): 607-615, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35389405

RESUMEN

The synthesis of metallic nanoparticles (MNP) with high surface area and controlled shape is of paramount importance to increase their catalytic performance. The detailed growing process of NP is mostly unknown and understanding the specific steps would pave the way for a rational synthesis of the desired MNP. Here we take advantage of the stabilization properties exerted by the tetragonal prismatic supramolecular nanocapsule 8·(BArF)8 to develop a synthetic methodology for sub-nanometric RuNP (0.6-0.7 nm). The catalytic properties of these sub-nanometric nanoparticles were tested on the hydrogenation of styrene, obtaining excellent selectivity for the hydrogenation of the alkene moiety. In addition, the encapsulation of [Ru5] clusters inside the nanocapsule is strikingly observed in most of the experimental conditions, as ascertained by HR-MS. Moreover, a thorough DFT study enlightens the nature of the [Ru5] clusters as tb-Ru5H2(η6-PhH)2(η6-pyz)3 (2) trapped by two arene moieties of the clip, or as tb-Ru5H2(η1-pyz)6(η6-pyz)3 (3) trapped between the two Zn-porphyrin units of the nanocapsule. Both options fulfill the Wade-Mingos counting rules, i.e. 72 CVEs for the closotb. The trapped [Ru5] metallic clusters are proposed to be the first-grown seeds of subsequent formation of the subnanometric RuNP. Moreover, the double role of the nanocapsule in stabilising ∼0.7 nm NPs and also in hosting ultra-small Ru clusters, is unprecedented and may pave the way towards the synthesis of ultra-small metallic clusters for catalytic purposes.

11.
ACS Catal ; 12(14): 8462-8475, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37528952

RESUMEN

The development of energetically efficient processes for the aqueous reduction of biomass-derived compounds into chemicals is key for the optimal transformation of biomass. Herein we report an early example of the reduction of biomass-derived oxygenated compounds in water by magnetically induced catalysis. Non-coated and carbon-coated core-shell FeCo@Ni magnetic nanoparticles were used as the heating agent and the catalyst simultaneously. In this way it was possible to control the product distribution by adjusting the field amplitude applied during the magnetic catalysis, opening a precedent for this type of catalysis. Finally, the encapsulation of the magnetic nanoparticles in carbon (FeCo@Ni@C) strongly improved the stability of the magnetic catalyst in solution, making its reuse possible up to at least eight times in dioxane and four times in water.

12.
Angew Chem Int Ed Engl ; 60(51): 26639-26646, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34617376

RESUMEN

Copper chromite is decorated with iron carbide nanoparticles, producing a magnetically activatable multifunctional catalytic system. This system (ICNPs@Cu2 Cr2 O5 ) can reduce aromatic ketones to aromatic alcohols when exposed to magnetic induction. Under magnetic excitation, the ICNPs generate locally confined hot spots, selectively activating the Cu2 Cr2 O5 surface while the global temperature remains low (≈80 °C). The catalyst selectively hydrogenates a scope of benzylic and non-benzylic ketones under mild conditions (3 bar H2 , heptane), while ICNPs@Cu2 Cr2 O5 or Cu2 Cr2 O5 are inactive when the same global temperature is adjusted by conventional heating. A flow reactor is presented that allows the use of magnetic induction for continuous-flow hydrogenation at elevated pressure. The excellent catalytic properties of ICNPs@Cu2 Cr2 O5 for the hydrogenation of biomass-derived furfuralacetone are conserved for at least 17 h on stream, demonstrating for the first time the application of a magnetically heated catalyst to a continuously operated hydrogenation reaction in the liquid phase.

13.
Nanoscale ; 13(29): 12438-12442, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34195744

RESUMEN

Herein we describe a new method for the determination of the surface temperature of magnetically heated nanoparticles in solution using the temperature dependency of the catalytic performances of iron carbide nanoparticles coated with ruthenium (Fe2.2C@Ru) for acetophenone hydrodeoxygenation. A correlation between nanoparticle surface temperature and magnetic field could be established. Very high surface temperatures could be estimated in different solvents, which were also found similar at a given magnetic field and well above some solvent boiling points.

14.
Nanoscale ; 13(14): 6902-6915, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33885491

RESUMEN

Formation of stable carbides during CO bond dissociation on small ruthenium nanoparticles (RuNPs) is demonstrated, both by means of DFT calculations and by solid state 13C NMR techniques. Theoretical calculations of chemical shifts in several model clusters are employed in order to secure experimental spectroscopic assignations for surface ruthenium carbides. Mechanistic DFT investigations, carried out on a realistic Ru55 nanoparticle model (∼1 nm) in terms of size, structure and surface composition, reveal that ruthenium carbides are obtained during CO hydrogenation. Calculations also indicate that carbide formation via hydrogen-assisted hydroxymethylidyne (COH) pathways is exothermic and occurs at reasonable kinetic cost on standard sites of the RuNPs, such as 4-fold ones on flat terraces, and not only in steps as previously suggested. Another novel outcome of the DFT mechanistic study consists of the possible formation of µ6 ruthenium carbides in the tip-B5 site, similar examples being known only for molecular ruthenium clusters. Moreover, based on DFT energies, the possible rearrangement of the surface metal atoms around the same tip-site results in a µ-Ru atom coordinated to the remaining RuNP moiety, reminiscent of a pseudo-octahedral metal center on the NP surface.

15.
Nano Lett ; 21(8): 3664-3670, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33847503

RESUMEN

Single crystalline magnetic FeCo nanostars were prepared using an organometallic approach under mild conditions. The fine-tuning of the experimental conditions allowed the direct synthesis of these nano-octopods with body-centered cubic (bcc) structure through a one-pot reaction, contrarily to the seed-mediated growth classically used. The FeCo nanostars consist of 8 tetrahedrons exposing {311} facets, as revealed by high resolution transmission electron microscopy (HRTEM) imaging and electron tomography (ET), and exhibit a high magnetization comparable with the bulk one (Ms = 235 A·m2·kg-1). Complex 3D spin configurations resulting from the competition between dipolar and exchange interactions are revealed by electron holography. This spin structures are stabilized by the high aspect ratio tetrahedral branches of the nanostars, as confirmed by micromagnetic simulations. This illustrates how magnetic properties can be significantly tuned by nanoscale shape control.

16.
ACS Nano ; 15(3): 3550-3556, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33660508

RESUMEN

Bimetallic nanoparticles (NPs) are complex systems with properties that far exceed those of the individual constituents. In particular, association of a noble metal and a first-row transition metal are attracting increasing interest for applications in catalysis, electrocatalysis, and magnetism, among others. Such objects display a rich structural chemistry thanks to their ability to form intermetallic phases, random alloys, or core-shell species. However, under reaction conditions, the surface of these nanostructures may be modified due to migration, segregation, or isolation of single atoms, leading to the formation of original structures with enhanced catalytic activity. In this respect, Zakhtser et al. report in this issue of ACS Nano the synthesis and study of the chemical evolution of the surface of a series of PtZn nanostructured alloys. In this Perspective, we report some selected examples of bimetallic nanocatalysts and their increased activity compared to that of the corresponding pure noble metal, with a special focus on Pt-based systems. We also discuss the mobility of the species present on the catalyst surface and the electronic influence of one metal to the other.

17.
Acc Chem Res ; 54(6): 1465-1480, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33622033

RESUMEN

Recently, hydrogen isotope exchange (HIE) reactions have experienced impressive development due to the growing importance of isotope containing compounds in various fields including materials and life sciences, in addition to their classical use for mechanistic studies in chemistry and biology. Tritium-labeled compounds are also of crucial interest to study the in vivo fate of a bioactive substance or in radioligand binding assays. Over the past few years, deuterium-labeled drugs have been extensively studied for the improvement of ADME (absorption, distribution, metabolism, excretion) properties of existing bioactive molecules as a consequence of the primary kinetic isotope effect. Furthermore, in the emergent "omic" fields, the need for new stable isotopically labeled internal standards (SILS) for quantitative GC- or LC-MS analyses is increasing. Because of their numerous applications, the development of powerful synthetic methods to access deuterated and tritiated molecules with either high isotope incorporation and/or selectivities is of paramount importance.HIE reactions allow a late-stage incorporation of hydrogen isotopes in a single synthetic step, thus representing an advantageous alternative to conventional multistep synthesis approaches which are time- and resource-consuming. Moreover, HIE reactions can be considered as the most fundamental C-H functionalization processes and are therefore of great interest for the chemists' community. Depending on the purpose, HIE reactions must either be highly regioselective or allow a maximal incorporation of hydrogen isotopes, sometimes both. In this context, metal-catalyzed HIE reactions are generally performed using either homogeneous or heterogeneous catalysis which may have considerable drawbacks including an insufficient isotope incorporation and a lack of chemo- and/or regioselectivity, respectively.Over the past 6 years, we have shown that nanocatalysis can be considered as a powerful tool to access complex labeled molecules (e.g., pharmaceuticals, peptides and oligonucleotides) via regio- and chemoselective or even enantiospecific labeling processes occurring at the surface of metallic nanoclusters (Ru or Ir). Numerous heterocyclic (both saturated and unsaturated) and acyclic scaffolds have been labeled with an impressive functional group tolerance, and highly deuterated compounds or high molar activity tritiated drugs have been obtained. An insight into mechanisms has also been provided by theoretical calculations to explain the regioselectivities of the isotope incorporation. Our studies have suggested that undisclosed key intermediates, including 4- and 5-membered dimetallacycles, account for the particular regioselectivities observed during the process, in contrast to the 5- or 6-membered metallacycle key intermediates usually encountered in homogeneous catalysis. These findings together with the important number of available coordination sites explain the compelling reactivity of metal nanoparticles, in between homogeneous and heterogeneous catalysis. They represent innovative tools combining the advantages of both methods for the isotopic labeling and activation of C-H bonds of complex molecules.

18.
Nanoscale Horiz ; 6(3): 271-276, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507203

RESUMEN

Identifying descriptors that govern charge transport in molecular electronics is of prime importance for the elaboration of devices. The effects of molecule characteristics, such as size, bulkiness or charge, have been widely reported. Herein, we show that the molecule polarizability can be a crucial parameter to consider. To this end, platinum nanoparticle self-assemblies (PtNP SAs) are synthesized in solution, including a series of polyoxometalates (POMs). The charge of the POM unit can be modified according to the nature of the central heteroatom while keeping its size constant. POM hybrids that display remote terminal thiol functions strongly anchor the PtNP surface to form robust SAs. IV curves, recorded by conductive AFM, show a decrease in Coulomb blockade as the dielectric constant of the POMs increases. In this system, charge transport across molecular junctions can be interpreted as variations in polarizability, which is directly related to the dielectric constant.

19.
Small ; 17(5): e2006683, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33346403

RESUMEN

The synthesis, characterization, and catalytic properties of bimetallic cobalt-rhodium nanoparticles of defined Co:Rh ratios immobilized in an imidazolium-based supported ionic liquid phase (Cox Rh100- x @SILP) are described. Following an organometallic approach, precise control of the Co:Rh ratios is accomplished. Electron microscopy and X-ray absorption spectroscopy confirm the formation of small, well-dispersed, and homogeneously alloyed zero-valent bimetallic nanoparticles in all investigated materials. Benzylideneacetone and various bicyclic heteroaromatics are used as chemical probes to investigate the hydrogenation performances of the Cox Rh100- x @SILP materials. The Co:Rh ratio of the nanoparticles is found to have a critical influence on observed activity and selectivity, with clear synergistic effects arising from the combination of the noble metal and its 3d congener. In particular, the ability of Cox Rh100- x @SILP catalysts to hydrogenate 6-membered aromatic rings is found to experience a remarkable sharp switch in a narrow composition range between Co25 Rh75 (full ring hydrogenation) and Co30 Rh70 (no ring hydrogenation).

20.
ACS Appl Nano Mater ; 3(7): 7076-7087, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32743352

RESUMEN

Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 °C, significant sintering of MagNPs takes place. Here we present encapsulated magnetic FeCo and Co NPs in carbon (Co@C and FeCo@C) as an ultrastable heating material suitable for high-temperature magnetic catalysis. Indeed, FeCo@C or a mixture of FeCo@C:Co@C (2:1) decorated with Ni or Pt-Sn showed good stability in terms of temperature and catalytic performances. In addition, consistent conversions and selectivities regarding conventional heating were observed for CO2 methanation (Sabatier reaction), propane dehydrogenation (PDH), and propane dry reforming (PDR). Thus, the encapsulation of MagNPs in carbon constitutes a major advance in the development of stable catalysts for high-temperature magnetically induced catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...