Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharm Nanotechnol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38867523

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia and is expected to greatly rise in future, making it a major worldwide health concern with severe impacts on individuals and society. Despite advancements in understanding the cellular and molecular aspects of Alzheimer's disease (AD) in recent decades, it still poses a significant problem. A major problem is accurately delivering drugs to diseased neurons while minimising effects on healthy neurons. This difficulty is worsened by the low water solubility of anti-Alzheimer's disease medicines and the blood-brain barrier (BBB) that hinders the entry of central nervous system pharmaceuticals that are highly lipophilic. OBJECTIVE: The focus of this article is on nanocarriers that are lipid-based. This is one of the more widely accepted methods of treating Alzheimer's disease, as it increases therapeutic efficacy while decreasing side effects related to cooperated neurological disorder payload. METHOD: Searched many databases for papers published under the title (including PubMed, Elsevier, and Google Scholar). RESULTS/CONCLUSION: Nano Lipid Carriers (NLCs) are recognized for their ability to target the brain effectively due to their lipid-loving properties and compatibility with living tissues. They improve the absorption of drugs in the brain while decreasing the accumulation of drugs in unintended organs. This work emphasises the importance of nano lipid carriers, which are lipophilic and biocompatible and have demonstrated exceptional targeting efficiency, making them an ideal carrier system for delivering medications to the brain.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38910470

RESUMEN

A chronic metabolic condition, diabetes mellitus (DM), is becoming more common all over the globe. Diabetic complications include diabetic foot ulcers (DFUs). Between fifteen and twenty-five percent of people with diabetes will experience DFU at some point in their lives. Prolonged hospital stays and amputations are common outcomes of DFUs due to the absence of targeted therapy and appropriate wound dressings. Specialized DFU wound care is expected to be in high demand due to the anticipated increase in the prevalence of DM. Therefore, there is a strong need to enhance and create more effective wound dressings and therapies that are unique to DFU. Bioengineered tissues, individualised prostheses, and implants are just a few examples of how 3D bioprinting has revolutionised healthcare in the past decade. This review delves into the difficulties of wound management and explores how 3D bioprinting could improve existing treatment approaches and biomanufacturing composite 3D human skin substitutes as an alternative to skin grafting. To alleviate the healthcare burden caused by the rising incidence of DM, it will be crucial to co-develop 3D bioprinting technologies with new therapeutic techniques to address the unique pathophysiological problems of DFU in the future.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38920078

RESUMEN

The process of wound healing is intricate and requires close coordination; any disruption to this process can have catastrophic results. It is hypothesized that chronic wounds that do not heal or that cease healing entirely can be caused by a combination of host factors and bacteria that are present in a wound bed or wound bed environment. There is currently a lack of understanding regarding the role that the cutaneous microbiome plays in the healing process of wounds, despite the fact that methods that do not rely on culture have revealed the role that the gut microbiome plays in human health and illness. In order to keep the host immune system in check, protect the epithelial barrier function, and ward off harmful microbes, skin commensals play a crucial role. This review compiles the research on the effects of microbiome modifications on wound healing and tissue regeneration from both clinical and pre-clinical investigations on a variety of chronic skin wounds. It is now clear that human skin commensals, symbionts, and pathogens all play a part in the inflammatory response, which in turn suggests a number of ways to treat wounds that are infected and not healing. To fully understand the function of the human skin microbiome in both short-term and long-term wound healing, additional study is required to reconcile the conflicting and contentious results of previous investigations.

4.
Pharmaceuticals (Basel) ; 17(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38931368

RESUMEN

Neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, and others) and cancer, seemingly disparate in their etiology and manifestation, exhibit intriguing associations in certain cellular and molecular processes. Both cancer and neurodegenerative diseases involve the deregulation of cellular processes such as apoptosis, proliferation, and DNA repair and pose a significant global health challenge. Afzelin (kaempferol 3-O-rhamnoside) is a flavonoid compound abundant in various plant sources. Afzelin exhibits a diverse range of biological activities, offering promising prospects for the treatment of diseases hallmarked by oxidative stress and deregulation of cell death pathways. Its protective potential against oxidative stress is also promising for alleviating the side effects of chemotherapy. This review explores the potential therapeutic implications of afzelin, including its capacity to mitigate oxidative stress, modulate inflammation, and promote cellular regeneration in neurodegenerative and cancer diseases.

5.
Eur J Neurosci ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726764

RESUMEN

In females, Alzheimer's disease (AD) incidences increases as compared to males due to estrogen deficiency after menopause. Estrogen therapy is the mainstay therapy for menopause and associated complications. Estrogen, a hormone with multifaceted physiological functions, has been implicated in AD pathophysiology. Estrogen plays a crucial role in amyloid precursor protein (APP) processing and overall neuronal health by regulating various factors such as brain-derived neurotrophic factor (BDNF), intracellular calcium signalling, death domain-associated protein (Daxx) translocation, glutamatergic excitotoxicity, Voltage-Dependent Anion Channel, Insulin-Like Growth Factor 1 Receptor, estrogen-metabolising enzymes and apolipoprotein E (ApoE) protein polymorphisms. All these factors impact the physiology of postmenopausal women. Estrogen replacement therapies play an important treatment strategy to prevent AD after menopause. However, use of these therapies may lead to increased risks of breast cancer, venous thromboembolism and cardiovascular disease. Various therapeutic approaches have been used to mitigate the effects of estrogen on AD. These include hormone replacement therapy, Selective Estrogen Receptor Modulators (SERMs), Estrogen Receptor Beta (ERß)-Selective Agonists, Transdermal Estrogen Delivery, Localised Estrogen Delivery, Combination Therapies, Estrogen Metabolism Modulation and Alternative Estrogenic Compounds like genistein from soy, a notable phytoestrogen from plant sources. However, mechanism via which these approaches modulate AD in postmenopausal women has not been explained earlier thoroughly. Present review will enlighten all the molecular mechanisms of estrogen and estrogen replacement therapies in AD. Along-with this, the association between estrogen, estrogen-metabolising enzymes and ApoE protein polymorphisms will also be discussed in postmenopausal AD.

6.
Curr Drug Deliv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638050

RESUMEN

M. oleifera is the most adapted tree species in different medicinal eco-systems and has resilience against climate changes. This multiple-use tree provides healthy foods, snacks, honey, and fuel. Besides this, it has immense promising applicationsby offering antimicrobial and antibacterial activities for targeted uses. This validates the court of Hippocrates that let food be the medicine and medicine be the food for which moringa qualifies. In view of this, the antioxidant and in vitro antibacterial potency of the hydro-ethanolic extract of M. oleifera was evaluated on clinically isolated multidrug-resistant strains of Staphylococcus aureus. Furthermore, in vivo, the healing response of M. oleifera extract was analysed on corneal ulcers induced in rabbit eyes infected with methicillin-resistant Staphylococcus aureus. TheM. oleifera extract exhibited exponential antioxidant activity. In-vitro antibacterial activity was evaluated by agar well diffusion assay showing zone of inhibition ranging from 11.05±0.36 to 20±0.40 mm at concentrations of 20, 40, 80, and 160 mg/ml, whereas, in our finding, no zone of inhibition was observed below 20 mg/ml concentration, which indicated that there is threshold limit below which the antibacterial activity of M. oleifera extract is not observed. Furthermore, continuous application of 3% and 5% M. oleifera extract (eye drop) four times a day for 14 consecutive days showed a significant healing response of the eyes of rabbits with corneal ulcers. These results suggest that M. oleifera extract could be a viable alternative to existing antibacterial therapies for corneal ulcers. Additionally, there is a possibility of commercial formulation of M. oleifera extract in the form of deliverable pharmaceutical products; therefore, it should be explored further.

7.
Pharm Nanotechnol ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38504570

RESUMEN

The purpose of this review article is to provide a complete overview of the fastdeveloping topic of biobased nanomaterials and the various uses that they have. An extensive study into the utilization of biological resources for nanotechnology has been motivated by the growing demand for materials that are both sustainable and favorable to the environment. In this review, the different uses of biobased nanomaterials across a variety of fields are investigated. When it comes to drug delivery systems, biosensors, nanocarriers, and catalysts, biobased nanomaterials are interesting choices because of their unique qualities. These properties include biocompatibility, programmable surface chemistry, and inherent functionality. Also, in the biomedical field, biobased nanomaterials offer promising prospects for revolutionizing medical diagnostics and therapies. Their biocompatibility, tunable surface chemistry, and inherent functionalities make them attractive candidates for applications such as targeted drug delivery, imaging contrast agents, and tissue engineering scaffolds. In addition, the study discusses the current difficulties and potential future developments in the industry, emphasizing the necessity of interdisciplinary collaboration and ongoing innovation. The incorporation of nanomaterials derived from biological sources into conventional applications holds tremendous potential for the advancement of sustainable development and provides solutions to global concerns. For the purpose of providing researchers, scientists, and professionals with a complete grasp of the synthesis, characterization, and applications of biobased nanomaterials, the purpose of this review is to serve as a helpful resource.

8.
J Ethnopharmacol ; 328: 117899, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38341111

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: This study has important ethnopharmacological implications since it systematically investigated the therapeutic potential of Bacopa monnieri(L.) Wettst. (Brahmi) in treating neurological disorders characterized by oxidative stress-a growing issue in the aging population. Bacopa monnieri, which is strongly rooted in Ayurveda, has long been recognized for its neuroprotective and cognitive advantages. The study goes beyond conventional wisdom by delving into the molecular complexities of Bacopa monnieri, particularly its active ingredient, Bacoside-A, in countering oxidative stress. The study adds to the ethnopharmacological foundation for using this herbal remedy in the context of neurodegenerative disorders by unravelling the scientific underpinnings of Bacopa monnieri's effectiveness, particularly at the molecular level, against brain damage and related conditions influenced by oxidative stress. This dual approach, which bridges traditional wisdom and modern investigation, highlights Bacopa monnieri's potential as a helpful natural remedy for oxidative stress-related neurological diseases. AIM OF THE STUDY: The aim of this study is to investigate the detailed molecular mechanism of action (in vitro, in silico and in vivo) of Bacopa monnieri (L.) Wettst. methanolic extract and its active compound, Bacoside-A, against oxidative stress in neurodegenerative disorders. MATERIALS AND METHODS: ROS generation activity, mitochondrial membrane potential, calcium deposition and apoptosis were studied through DCFDA, Rhodamine-123, FURA-2 AM and AO/EtBr staining respectively. In silico study to check the effect of Bacoside-A on the Nrf-2 and Keap1 axis was performed through molecular docking study and validated experimentally through immunofluorescence co-localization study. In vivo antioxidant activity of Bacopa monnieri extract was assessed by screening the oxidative stress markers and stress-inducing hormone levels as well as through histopathological analysis of tissues. RESULTS: The key outcome of this study is that the methanolic extract of Bacopa monnieri (BME) and its active component, Bacoside-A, protect against oxidative stress in neurodegenerative diseases. At 100 and 20 µg/ml, BME and Bacoside-A respectively quenched ROS, preserved mitochondrial membrane potential, decreased calcium deposition, and inhibited HT-22 mouse hippocampus cell death. BME and Bacoside-A regulated the Keap1 and Nrf-2 axis and their downstream antioxidant enzyme-specific genes to modify cellular antioxidant machinery. In vivo experiments utilizing rats subjected to restrained stress indicated that pre-treatment with BME (50 mg/kg) downregulated oxidative stress markers and stress-inducing hormones, and histological staining demonstrated that BME protected the neuronal cells of the Cornu Ammonis (CA1) area in the hippocampus. CONCLUSIONS: Overall, the study suggests that Bacopa monnieri(L.) Wettst. has significant potential as a natural remedy for neurodegenerative disorders, and its active compounds could be developed as new drugs for the prevention and treatment of oxidative stress-related diseases.


Asunto(s)
Bacopa , Enfermedades Neurodegenerativas , Saponinas , Ratones , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Simulación del Acoplamiento Molecular , Saponinas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Extractos Vegetales/farmacología
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 703-724, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37615709

RESUMEN

The main objective of this review is to highlight the therapeutic potential of allicin, a defense molecule in garlic known for its diverse health benefits, and address the key challenges of its bioavailability and stability. The research further aims to evaluate various formulation strategies and nanotechnology-based delivery systems that can resolve these issues and improve allicin's clinical efficacy, especially in cancer therapy. We conducted a comprehensive review of the available literature and previous studies, focusing on the therapeutic properties of allicin, its bioavailability, stability issues, and novel formulation strategies. We assessed the mechanism of action of allicin in cancer, including its effects on signaling pathways, cell cycle, apoptosis, autophagy, and tumor development. We also evaluated the outcomes of both in vitro and in vivo studies on different types of cancers, such as breast, cervical, colon, lung, and gastric cancer. Despite allicin's significant therapeutic benefits, including cardiovascular, antihypertensive, cholesterol-lowering, antimicrobial, antifungal, anticancer, and immune-modulatory activity, its clinical utility is limited due to poor stability and unpredictable bioavailability. Allicin's bioavailability in the gastrointestinal tract is dependent on the activity of the enzyme alliinase, and its stability can be affected by various conditions like gastric acid and intestinal enzyme proteases. Recent advances in formulation strategies and nanotechnology-based drug delivery systems show promise in addressing these challenges, potentially improving allicin's solubility, stability, and bioavailability. Allicin offers substantial potential for cancer therapy, yet its application is hindered by its instability and poor bioavailability. Novel formulation strategies and nanotechnology-based delivery systems can significantly overcome these limitations, enhancing the therapeutic efficacy of allicin. Future research should focus on refining these formulation strategies and delivery systems, ensuring the safety and efficacy of these new allicin formulations. Clinical trials and long-term studies should be carried out to determine the optimal dosage, assess potential side effects, and evaluate their real-world applicability. The comparative analysis of different drug delivery approaches and the development of targeted delivery systems can also provide further insight into enhancing the therapeutic potential of allicin.


Asunto(s)
Disulfuros , Neoplasias , Humanos , Disponibilidad Biológica , Ácidos Sulfínicos/uso terapéutico , Ácidos Sulfínicos/metabolismo , Ácidos Sulfínicos/farmacología , Resultado del Tratamiento , Neoplasias/tratamiento farmacológico
11.
Inflammopharmacology ; 32(1): 307-317, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38085446

RESUMEN

Inflammation is a multifaceted biological reaction to a wide range of stimuli, and it has been linked to the onset and progression of chronic diseases such as heart disease, cancer, and diabetes. Inflammatory markers found in the blood, including C-reactive protein, serum amyloid A, fibrinogen, plasma viscosity, erythrocyte sedimentation rate, interleukin-6, and soluble adhesion molecules (like intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), are risk factors for cardiovascular diseases such as coronary heart disease, stroke, and peripheral arterial disease. These markers play a crucial role in understanding and assessing cardiovascular health. Due to this complicated relationship between inflammation and cardiovascular disease, anti-inflammatory agents of natural origin have been the subject of many preclinical and clinical studies in recent years. Eugenol is a natural phenolic compound found in clove oil, nutmeg oil, cinnamon oil, and bay leaf oil, as well as other essential oils. Eugenol has been shown to have anti-inflammatory properties in many forms of experimental inflammation. It may scavenge free radicals, which contribute to inflammation and tissue damage. Various studies also suggest that eugenol can limit the production of inflammatory mediators such as prostaglandins, cytokines, and chemokines. Animal models of arthritis, colitis, and lung damage, as well as human clinical studies, have shown that eugenol has phenomenal anti-inflammatory properties. These properties suggest that eugenol may be able to reduce the risk of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Aceites Volátiles , Animales , Humanos , Eugenol/farmacología , Eugenol/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Factores de Riesgo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Aceites Volátiles/uso terapéutico , Inflamación/tratamiento farmacológico , Factores de Riesgo de Enfermedad Cardiaca
12.
J Ethnopharmacol ; 321: 117498, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030021

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Iris Kashmiriana Baker, a traditional medicinal plant, is native to Asia, found in India, Nepal, Afghanistan, Pakistan, as name indicates majorly it's found in Kashmir region of India. Ethnopharmacologically this plant has been used there for the management of joint pain, but there was no scientific literature available. This species also comes under critically endangered species. AIM OF THE STUDY: The current study aims to evaluate the effect of Iris kashmiriana Baker against nociception and rheumatoid arthritis in experimental rats with In-silico model. MATERIAL AND METHODS: Various extracts of the plant were investigated for their in-vitro antioxidant activity. Acute inflammation and FCA induced in rat model, then acetic acid-induced writhing in mice were used. These anti-rheumatic results were justified by the computational method. RESULTS: The total phenolic and flavonoid concentration of HE extracts were found to be 95.30 ± 2.80 mg/g and 18.18 ± 5.88 mg/g respectively. IC50 and maximum inhibition of HE extracts against DPPH and H2O2 were also effective. Among different doses, 400 mg/kg of HE extracts showed significant (p<0.001) reduction in acute inflammation (16.42 %), in analgesic activity, the HE extract was found statistically (p<0.001) reduced (60.15 %) and in arthritis model, maximum inflammation reduced (25.9%) was found with hydro ethanol extract and statistical significant (p<0.001). and the paw thickness was reduced (27.4 %). Antioxidant activity of HE extract was found to be optimum (37.01%, p<0.001), Superoxide dismutase concentration was found to be optimum (65.12%, p<0.001). In Histopathology, HE 400 mg/kg showed mild inflammation only. The weight of the thymus and spleen were also determined and the HE 400 mg/kg extract inhibited the increase in weight of these organs compared with positive group (28.26 %, and 25.11 %), respectively. CONCLUSION: Among all the different extracts and various doses, the iris kashmiriana Baker hydro-ethanolic (60:40) 400 mg/kg extract showed the best response among all different extracts.


Asunto(s)
Artritis Reumatoide , Extractos Vegetales , Ratas , Ratones , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Nocicepción , Peróxido de Hidrógeno , Analgésicos/farmacología , Analgésicos/uso terapéutico , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Etanol/uso terapéutico , Pakistán
13.
Biomed Pharmacother ; 169: 115881, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37989030

RESUMEN

Diabetic retinopathy (DR) is a form of retinal microangiopathy that occurs as a result of long-term Diabetes mellitus (DM). Patients with Diabetes mellitus typically suffer from DR as a progression of the disease that may be due to initiation and dysregulation of pathways like the polyol, hexosamine, the AGE/RAGE, and the PKC pathway, which all have negative impacts on eye health and vision. In this review, various databases, including PubMed, Google Scholar, Web of Science, and Science Direct, were scoured for data relevant to the aforementioned title. The three most common therapies for DR today are retinal photocoagulation, anti-vascular endothelial growth factor (VEGF) therapy, and vitrectomy, however, there are a number of drawbacks and limits to these methods. So, it is of critical importance and profound interest to discover treatments that may successfully address the pathogenesis of DR. Curcumin and ß-glucogallin are the two potent compounds of natural origin that are already being used in various nutraceutical formulations for several ailments. They have been shown potent antiapoptotic, anti-inflammatory, antioxidant, anticancer, and pro-vascular function benefits in animal experiments. Their parent plant species have been used for generations by practitioners of traditional herbal medicine for the treatment and prevention of various eye ailments. In this review, we will discuss about pathophysiology of Diabetic retinopathy and the therapeutic potentials of curcumin and ß-glucogallin one of the principal compounds from Curcuma longa and Emblica officinalis in Diabetic retinopathy.


Asunto(s)
Curcumina , Diabetes Mellitus , Retinopatía Diabética , Animales , Humanos , Retinopatía Diabética/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/metabolismo , Retina/patología , Taninos Hidrolizables/uso terapéutico , Diabetes Mellitus/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-37861051

RESUMEN

Neurodegenerative disorders are characterized by a gradual but irreversible loss of neurological function. The ability to detect and treat these conditions successfully is crucial for ensuring the best possible quality of life for people who suffer from them. The development of effective new methods for managing and treating neurodegenerative illnesses has been made possible by recent developments in computer technology. In this overview, we take a look at the prospects for applying computational approaches, such as drug design, AI, ML, and DL, to the treatment of neurodegenerative diseases. To review the current state of the field, this article discusses the potential of computational methods for early disease detection, quantifying disease progression, and understanding the underlying biological mechanisms of neurodegenerative diseases, as well as the challenges associated with these approaches and potential future directions. Moreover, it delves into the creation of computational models for the individualization of care for neurodegenerative diseases. The article concludes with suggestions for future studies and clinical applications, highlighting the advantages and disadvantages of using computational techniques in the treatment of neurodegenerative diseases.

15.
Pharm Nanotechnol ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37818559

RESUMEN

BACKGROUND: It is estimated that there are over 200 million people living with diabetes mellitus (DM) all over the world. It is a metabolic condition caused by decreased insulin action or secretion. Diabetes Mellitus is also known as Type 2 Diabetes Mellitus. Type 1 diabetes mellitus and type 2 diabetes mellitus are the two most common types of DM. Treatment for type 1 diabetes often consists of insulin replacement therapy, while treatment for type 2 diabetes typically consists of oral hypoglycemics. OBJECTIVE: Conventional dosing schedules for the vast majority of these medications come with a number of drawbacks, the most common of which are frequent dosing, a short half-life, and low bioavailability. Thus, innovative and regulated oral hypoglycemic medication delivery methods have been developed to reduce the limitations of standard dose forms. METHODS: The studies and reviews published under the title were looked up in several databases (including PubMed, Elsevier, and Google Scholar). RESULTS: Hydrogels made from biopolymers are three-dimensional polymeric networks that can be physically or chemically crosslinked. These networks are based on natural polymers and have an inherent hydrophilic quality because of the functional groups they contain. They have a very high affinity for biological fluids in addition to a high water content, softness, flexibility, permeability, and biocompatibility. The fact that these features are similar to those of a wide variety of soft living tissues paves the way for several potentials in the field of biomedicine. In this sense, hydrogels offer excellent platforms for the transport of medications and the controlled release of those drugs. Additionally, biopolymer-based hydrogels can be put as coatings on medical implants in order to improve the biocompatibility of the implants and to prevent medical diseases. CONCLUSION: The current review focuses on the most recent advancements made in the field of using biopolymeric hydrogels that are physically and chemically crosslinked, in addition to hydrogel coatings, for the purpose of providing sustained drug release of oral hypoglycemics and avoiding problems that are associated with the traditional dosage forms of oral hypoglycemics.

16.
Ann Med Surg (Lond) ; 85(10): 4954-4963, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37811101

RESUMEN

Objective: This review aims to explore the impact of the COVID-19 pandemic on mental health, with a focus on the physiological and psychological consequences, including comorbidities. The goal is to understand the direct and indirect populations affected by mental distress and identify potential interventions. Methodology: A comprehensive literature search was conducted using various databases, including Google Scholar, ResearchGate, ScienceDirect, PubMed, PLoS One, and Web of Science. The search utilized relevant keywords to investigate the direct and indirect impacts of COVID-19 on mental health. The selected articles were critically evaluated and analyzed to identify key findings and insights. Main findings: Mental health, being an intrinsic component of overall well-being, plays a vital role in physiological functioning. The COVID-19 pandemic, caused by the emergence of the novel SARS-CoV-2 virus, has had a devastating global impact. Beyond the respiratory symptoms, individuals recovering from COVID-19 commonly experience additional ailments, such as arrhythmia, depression, anxiety, and fatigue. Healthcare professionals on the frontlines face an elevated risk of mental illness. However, it is crucial to recognize that the general population also grapples with comparable levels of mental distress. Conclusion: The COVID-19 pandemic has underscored the significance of addressing mental health concerns. Various strategies can help mitigate the impact, including counselling, fostering open lines of communication, providing mental support, ensuring comprehensive patient care, and administering appropriate medications. In severe cases, treatment may involve the supplementation of essential vitamins and antidepressant therapy. By understanding the direct and indirect impacts of COVID-19 on mental health, healthcare providers and policymakers can develop targeted interventions to support individuals and communities affected by the pandemic. Continued research and collaborative efforts are essential to address this pervasive issue effectively.

17.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37895858

RESUMEN

Balancing the therapeutic advantages of a medicine with its possible risks and side effects is an important part of medical practice and drug regulation. When a drug is designed to treat a particular disease or medical condition ends up causing additional risks or side effects that lead to the development of other serious health problems, it can have detrimental consequences for patients. This article explores the correlation between persistent proton pump inhibitor (PPI) use and hypertension, a common cardiovascular ailment. While PPIs are beneficial in treating various gastrointestinal problems, their availability without a prescription has resulted in self-medication and long-term use without medical monitoring. Recent findings have revealed a link between long-term PPI usage and increased cardiovascular risks, particularly hypertension. This study investigates the intricate mechanisms underlying PPI's effects, focusing on potential pathways contributing to hypertension, such as endothelial dysfunction, disruption of nitric oxide bioavailability, vitamin B deficiency, hypocalcemia, and hypomagnesemia. The discussion explains how long-term PPI use can disrupt normal endothelial function, vascular control, and mineral balance, eventually leading to hypertension. The article emphasizes the significance of using PPIs with caution and ongoing research to better understand the implications of these medications on cardiovascular health.

18.
Curr Drug Targets ; 24(13): 1066-1078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37718521

RESUMEN

BACKGROUND: Statins, especially simvastatin promote bone formation by stimulating the activity of osteoblasts and suppressing osteoclast activity via the BMP-Smad signaling pathway. Statins present the liver first-pass metabolism. This study attempts to fabricate and evaluate simvastatin functionalized hydroxyapatite encapsulated in poly(lactic-co-glycolic) acid (PLGA) nanoparticles (HSIM-PLGA NPs) administered subcutaneously with sustained release properties for effective management of osteoporosis. METHODS: Simvastatin functionalized hydroxyapatite (HSIM) was prepared by stirring and validated by docking studies, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Further, HSIM-loaded PLGA nanoparticles (HSIM-PLGA NPs) were developed via the solvent emulsification method. The nanoparticles were evaluated for zeta potential, particle size, entrapment efficiency, stability studies, and in vitro drug release studies. in vitro binding affinity of nanoparticles for hydroxyapatite was also measured. Bone morphology and its effect on bone mineral density were examined by using a glucocorticoid-induced osteoporosis rat model. RESULTS: The optimized nanoparticles were found to be amorphous and showed no drug-polymer interaction. The particle size of formulated nanoparticles varied from 196.8 ± 2.27nm to 524.8 ± 5.49 nm and the entrapment efficiency of nanoparticles varied from 41.9 ± 3.44% to 70.8 ± 4.46%, respectively. The nanoparticles showed sustained release behaviour (75% in 24 hr) of the drug followed by non-fickian drug release. The nanoparticles exhibited high binding affinity to bone cell receptors, increasing bone mineral density. A significant difference in calcium and phosphorous levels was observed in disease and treatment rats. Porous bone and significant improvement in porosity were observed in osteoporotic rats and treated rats, respectively (P < 0.05). CONCLUSION: Bone-targeting nanoparticles incorporating functionalized simvastatin can target bone. Thus, in order to distribute simvastatin subcutaneously for the treatment of osteoporosis, the developed nanoparticles may act as a promising approach.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Nanopartículas , Osteoporosis , Ratas , Animales , Ácido Poliglicólico/química , Ácido Poliglicólico/uso terapéutico , Ácido Láctico/química , Ácido Láctico/uso terapéutico , Preparaciones de Acción Retardada/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Portadores de Fármacos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Hidroxiapatitas/uso terapéutico , Simvastatina/farmacología , Simvastatina/uso terapéutico , Simvastatina/química , Nanopartículas/química , Tamaño de la Partícula
19.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513820

RESUMEN

The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.

20.
Pharm Nanotechnol ; 11(4): 324-338, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36892113

RESUMEN

BACKGROUND: Bioavailability is the dissimilarity between the total amount of drug exposure to a person and the actual dose received by his body. The difference in bioavailability between formulations of a given drug can have clinical implications. METHODS: Poor aqueous solubility, inappropriate partition coefficient, high first-pass metabolism, narrow absorption window, and acidic pH of the stomach are the main reasons behind the low bioavailability of drugs. There are three substantial methods to vanquish these bioavailability issues, namely pharmacokinetic, biological, and pharmaceutical approaches. RESULTS: In the pharmacokinetic approach a drug molecule is improved by making alterations in its chemical structure. In the biological approach, the course of administration of the drug is changed; for example, if a drug has very less oral bioavailability, it can be injected as parenteral or some other route if feasible. In the pharmaceutical approach to enhance bioavailability, the physiochemical properties of the drug or formulation are modified. It is cost-effective, less time-consuming, and the risk factor is also minimum. Co-solvency, particle size reduction, hydrotrophy, solid dispersion, micellar solubilisation, complexation, and colloidal drug delivery systems are some of the commonly used methods to enhance the dissolution profiles of drugs via the pharmaceutical approach. Similar to liposomes, niosomes are also vesicular carrier systems but non-ionic surfactants are used instead of phospholipids in their formulation, i.e., their bilayer is comprised of non-ionic surfactants that encircle the aqueous compartment. The niosomes are presumed to raise the bioavailability of poorly water-soluble drugs by increasing their uptake by the M cells present in Peyer's patches of lymphatic tissues of the intestine. CONCLUSION: Niosomal technology has become an attractive method to overcome several limitations due to its various merits like biodegradability, high stability, non-immunogenic nature, low cost, and flexibility to incorporate lipophilic as well as hydrophilic drugs. The bioavailability of many BCS class II and IV drugs has been successfully enhanced using niosomal technology, like Griseofulvin, Paclitaxel, Candesartan Cilexetil, Carvedilol, Clarithromycin, Telmisartan, and Glimepiride. Niosomal technology has also been exploited for brain targeting via nasal delivery for many drugs like Nefopam, Pentamidine, Ondansetron HCl, and Bromocriptine mesylate. Based on this data, it can be concluded that niosomal technology has increased importance in bioavailability enhancement and improving the overall performance of molecules in vitro and in vivo. Thus, niosomal technology holds tremendous potential for scale-up applications, overcoming the drawbacks of conventional dosage forms.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Humanos , Liposomas/química , Disponibilidad Biológica , Agua/química , Tecnología , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...