Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(21): 3318-3330, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38747210

RESUMEN

This study outlines the development and optimization of an analytical method using Disposable Pipette Extraction (DPX) followed by high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis to determine NAs in medicines. HPLC-MS analysis utilized a reversed-phase and positive mode electrospray ion source. DPX parameters were optimized through univariate and multivariate analyses, including extraction phase, desorption solvent, sample pH, equilibrium time, and extraction/desorption cycles. The optimized conditions included a C18 extraction phase, methanol desorption solvent, pH at 7, an equilibrium time of 30 seconds, 2 extraction cycles, and 5 desorption cycles. Considering this method, it was possible to achieve a sample preparation step for the analysis of NAs in medicines using a minimal amount of extraction phase, sample, and desorption solvent. Furthermore, the total extraction procedure enables the extraction of NAs in around 4 minutes with NA recovery up to 98%. Analytical performance demonstrated precision and accuracy below 15% and a quantification limit of 1 ng mL-1, meeting validation requirements set by regulations worldwide. Thus, the DPX/HPLC-MS technique offers a faster and cost-effective method for analyzing NAs in medicines compared to traditional approaches. Besides, this method reduces solvent consumption and residue generation, enhancing environmental sustainability according to green chemistry principles.


Asunto(s)
Nitrosaminas , Cromatografía Líquida de Alta Presión/métodos , Nitrosaminas/análisis , Nitrosaminas/aislamiento & purificación , Límite de Detección , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Extracción en Fase Sólida/métodos , Cromatografía Líquida con Espectrometría de Masas
2.
Artículo en Inglés | MEDLINE | ID: mdl-38716699

RESUMEN

N-nitrosamines (NAs) are prevalent mutagenic impurities in various consumer products. Their discovery in valsartan-containing medicines in 2018 prompted global regulatory agencies to set guidelines on their presence and permissible levels in pharmaceuticals. In order to determine the NAs content in medicines, efficient and sensitive analytical methods have been developed based on mass spectrometry techniques. Direct analysis in real time-mass spectrometry (DART-MS) has emerged as a prominent ambient ionization technique for pharmaceutical analysis due to its high-throughput capability, simplicity, and minimal sample preparation requirements. Thus, in this study DART-MS was evaluated for the screening and quantification of NAs in medicines. DART-MS analyses were conducted in positive ion mode, for both direct tablet analysis and solution analysis. The analytical performance was evaluated regarding linearity, precision, accuracy, limits of detection, and quantification. The DART-MS proved to be suitable for the determination of NAs in medicines, whether through direct tablet analysis or solution analysis. The analytical performance demonstrated linearity in the range from 1.00 to 200.00 ng mL-1, limits of quantification about 1.00 ng mL-1, precision and accuracy lower than 15%, and no significant matrix effect for six drug-related NAs. In conclusion, the DART-MS technique demonstrated to be an alternative method to determine NAs in medicines, aligning with the principles of green chemistry.

3.
Anal Chim Acta ; 1284: 341952, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37996153

RESUMEN

BACKGROUND: One of the primary objectives in green analytical practices is the seamless integration of extraction and separation steps, resulting in the augmentation of both analytical throughput and method performance. Consequently, the exploration of prospective sorbent materials has drawn significant attention in the scientific community, particularly concerning the potential for online procedures. Employing the optimal sorbent material within an automated analytical approach holds the promise of elevating the precision of the analytical evaluation. Molecularly imprinted polymers (MIPs) excel in specific analyte interaction within complex matrices. However, MIPs' full potential was not widely exploring especially for online analytical methodologies. RESULTS: Here is presented a comprehensive overview of the current applications of MIPs as sorbent materials within integrated and automated separation methodologies applied to diverse matrices including biological, food, and environmental samples. Notably, their primary advantage, as evidenced in the literature, lies in their exceptional selectivity for the target analyte discussed according to the adopted synthesis protocol. Furthermore, the literature discussed here illustrates the versatility of MIPs in terms of modification with one or more phases which are so-called hybrid materials, such as molecularly imprinted monoliths (MIM), the molecularly imprinted ionic liquid polymer (IL-MIP), and restricted access to molecularly imprinted polymer (RAMIP). The reported advantages enhance their applicability in integrated and automated separation procedures, especially to the column switching methods, across a broader spectrum of applications. SIGNIFICANCE: This revision aims to demonstrate the MIP's potential as a sorbent phase in integrated and automated methods, this comprehensive overview of MIP polymers in integrated and automated separation methodologies can be used as a valuable guide, inspiring new research on developing novel horizons for MIP applications to have their potential emphasized in analytical science and enhanced to the great analytical methods achievement.

4.
J Proteome Res ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37830917

RESUMEN

Oral squamous cell carcinoma (OSCC) is the prevalent type of oral cavity cancer, requiring precise, accurate, and affordable diagnosis to identify the disease in early stages, Comprehending the differences in lipid profiles between healthy and cancerous tissues encompasses great relevance in identifying biomarker candidates and enhancing the odds of successful cancer treatment. Therefore, the present study evaluates the analytical performance of simultaneous mRNA and lipid extraction in gingiva tissue from healthy patients and patients diagnosed with OSCC preserved in TRIzol reagent. The data was analyzed by partial least-squares discriminant analysis (PLS-DA) and confirmed via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The lipid extraction in TRIzol solution was linear in a range from 330 to 2000 ng mL-1, r2 > 0.99, intra and interday precision and accuracy <15%, and absolute recovery values ranging from 90 to 110%. The most important lipids for tumor classification were evaluated by MALDI-MSI, revealing that the lipids responsible for distinguishing the OSCC group are more prevalent in the cancerous tissue in contrast to the healthy group. The results exhibit the possibilities to do transcriptomic and lipidomic analyses in the same sample and point out important candidates related to the presence of OSCC.

5.
Anal Bioanal Chem ; 415(18): 4125-4145, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37329466

RESUMEN

The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.


Asunto(s)
Microscopía , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Rayos Láser
6.
Microbiol Spectr ; : e0219422, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36852984

RESUMEN

Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.

7.
Food Chem ; 400: 134014, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36084587

RESUMEN

This study evaluates the use of paper spray ionization mass spectrometry (PSI-MS) for rapid determination of bisphenol A (BPA) and bisphenol S (BPS) in UHT milk and milk packaging. The packages were analyzed by cutting the cartons into triangular shapes and submitting them to PSI-MS analysis. The milk samples were subjected to a simple liquid-liquid extraction and the supernatant was deposited onto a triangular paper that was subsequently used for PSI-MS analysis. In milk, BPS and BPA levels ranged from 60.0 to 150.8 ng mL-1. The LOD and LOQ values were 1.5 and 4.8 ng mL-1 for BPA, and 4.8 and 16.0 ng mL-1 for BPS, respectively. Linearity was R2 > 0.98 for both compounds. Precision values were below 20%, and recoveries close to 100%. The PSI-MS can be used as a simple, rapid, and accurate methodology to determine bisphenols in milk and milk packaging.


Asunto(s)
Leche , Espectrometría de Masas en Tándem , Animales , Compuestos de Bencidrilo/análisis , Leche/química , Fenoles/análisis , Sulfonas
8.
J Pharm Biomed Anal ; 211: 114625, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35123327

RESUMEN

Traditionally, creatinine determination is made by a spectrophotometric method; however, some compounds present in biological samples can interfere with creatinine determination, decreasing the sensitivity of the method in urine samples. Consequently, we report the development of a new molecularly imprinted polymer as a sorbent phase for disposable pipette extraction to determine creatinine in urine samples by high-performance liquid chromatography with UV detection. The synthesized polymer showed a high superficial area and presented a first-order kinetic reaction and a high selectivity for creatinine extraction compared to the non-molecularly imprinted polymer. The main disposable pipette extraction variables evaluated included the number of draw/eject cycles, the pH of the solution and desorption solvent type. The developed method showed an inter and intra-day precision from 1.3% to 2.0% and 0.8-1.6% respectively, accuracy values ranging from 82.3% to 102.1% respectively and recovery values ranging between 96.5% and 101.3%, with a limit of quantification of 0.302 g L-1. The application of the developed method in real urine samples showed creatinine concentrations ranging from 0.55 to 6.61 g L-1. Thus, the developed method was revealed to be an efficient strategy for creatinine determination, reducing analysis time (3 min) and solvent use, and increasing selectivity compared with DPX commercial sorbents.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Cromatografía Líquida de Alta Presión/métodos , Creatinina , Humanos , Impresión Molecular/métodos , Polímeros/química , Extracción en Fase Sólida/métodos , Solventes/química
9.
J Enzyme Inhib Med Chem ; 37(1): 554-562, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35152818

RESUMEN

Aiming at finding natural sources of antidiabetics agents, 15 extracts from Brazilian medicinal plants of the Atlantic Forest and Amazon region were tested against α-glucosidase enzyme. Plants were selected based on the taxonomic relationships with genera including several species with antidiabetic activity. In this screening, the extracts obtained from the flowers of Hyptis monticola and the leaves of Lantana trifolia and Lippia origanoides resulted endowed with promising anti-α-glucosidase activity. The extracts from H. monticola and from L. origanoides collected in two different areas, were characterised by ultra-high performance liquid chromatography coupled to mass spectrometry. Bioassay-guided fractionation led to the identification of several enzyme inhibiting compounds, among them the mechanism of action of naringenin and pinocembrin was investigated. The two L. origanoides extracts showed differences in bioactivity and in the phytochemical profiles. The fractionation of the extract from H. monticola led to a partial loss of the inhibitory effect.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/farmacología , Hyptis/química , Lantana/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , alfa-Glucosidasas/metabolismo , Brasil , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Flores/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Espectrometría de Masas , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad
10.
Environ Sci Pollut Res Int ; 28(40): 57288-57296, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34089157

RESUMEN

Concerns about human health regarding the large use of bisphenol A in thermal papers have led to its replacement by bisphenol S. Analyses of bisphenols require several sample pretreatment steps, which are laborious, expensive, and time-consuming. A paper spray ionization mass spectrometry (PSI-MS) was developed to detect and quantify bisphenol S in three different brands of thermal papers commercially available. Parameters such as paper size, and paper position relative to the mass spectrometer inlet were evaluated. The analyses were performed in selected ion monitoring mode on a linear ion trap mass spectrometer. The developed method presented absolute recovery values ranging from 92.2 to 109.04%, accuracy values from -1.2 to 9.0%, and inter assay precision from 1.8 to 5.6% and enabled LOD as low as 5 ng g-1. The concentration of bisphenol S in all of the three brands of BPA-free thermal papers evaluated ranged from 1.36 to 6.77 µg g-1, and the concentrarion of BPA ranged from 6.56 to 16.4 µg g-1 in all samples of thermal paper evaluated. The PSI-MS method described here was comparable to the conventional ones, such as liquid chromatography coupled with mass spectrometry and gas chromatography coupled with mass spectrometry described in the literature. The present study proved to be practical, fast, and efficient for the direct determination of bisphenol S in thermal papers. Furthermore, the methodology here described showed to be a promising alternative to replace the classical methods for determination of bisphenol S, due to its simplicity, and no needing of any sample pretreatment.


Asunto(s)
Papel , Espectrometría de Masas en Tándem , Compuestos de Bencidrilo/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Fenoles , Sulfonas/análisis
11.
J Chromatogr A ; 1640: 461949, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33556677

RESUMEN

Analytical methods such as liquid chromatography (LC) and mass spectrometry (MS) are widely used techniques for the analyses of different classes of compounds. This is due to their highlighted capacity for separating and identifying components in complex matrices such food samples. However, in most cases, effective analysis of the target analyte becomes challenging due to the complexity of the sample, especially for quantification of trace concentrations. In this case, miniaturized sample preparation methods have been used as a strategy for analysis of complex matrices. This involves removing the interferents and concentrating the analytes in a sample. These methods combine simplicity and effectiveness and given their miniaturized scale, they are in accordance with green chemistry precepts. Besides, ambient mass spectrometry represents a new trend in fast and rapid analyses, especially for qualitative and screening analysis. However, for complex matrix analyses, sample preparation is still a difficult step and the miniaturized sample preparation techniques show great potential for an improved and widespread use of ambient mass spectrometry techniques. . This review aims to contribute as an overview of current miniaturized sample preparation techniques and ambient mass spectrometry methods as different approaches for selective and sensitive analysis of residues in food samples.


Asunto(s)
Análisis de los Alimentos/métodos , Espectrometría de Masas/métodos , Miniaturización/métodos , Cromatografía Liquida/métodos , Concentración de Iones de Hidrógeno , Microextracción en Fase Líquida , Temperatura
12.
J Pharm Biomed Anal ; 191: 113593, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32942105

RESUMEN

Roots´ bark extract of Brosimum gaudichaudii Trécul (EBGT) is traditionally used for photochemotherapy of vitiligo due to the presence of furanocoumarins psoralen (PSO) and 5-methoxypsoralen (5-MOP) as major compounds. Though plant extracts may provide additional highly permeable psoralens-like substances which may act synergically on vitiligo's therapy. Thus, the aim of this work was to develop an LC-MS/MS method for screening new highly permeable furanocoumarins from B. gaudichaudii and to compare biomarkers permeability and solubility provided as single compounds or as crude extract, according to BCS. An optimized LC-MS/MS method showed twelve permeable and bioactive compounds, among which 9 furanocoumarins, 2 pyranocoumarins and 1 dihydrocinnamic acid derivative were detected in EBGT samples. Solubility of PSO and 5-MOP was found to be, respectively, six- and eleven-fold higher in crude extract than as pure compounds. Permeability (Papp) of PSO and 5-MOP in EBGT were higher than metoprolol, the low/high BCS permeability class boundary reference compound. Hence, both biomarkers were considered as highly permeable (BCS2) compounds. Their permeability were concentration-dependent displaying values from 30.26 ± 5.13-8.21 ± 2.16 × 10-6 cm/s and 10.72 ± 1.73-6.07 ± 1.27 × 10-6 cm/s, respectively, over a wide range (2.3-200.0 mg mL-1). Thus, a carrier-mediated absorption process is suggested as the main mechanism. Accordingly, all additional permeated coumarins, identified by LC-MS/MS, showed to be at comparable amount of biomarkers in the permeated samples inferring similar high permeability rate. Moreover, biomarkers and other highly absorbable and bioactive linear furanocoumarins from EBGT may be used for vitiligo´s photochemotherapy. Taken together, these findings bring additional evidences for using crude plant extract when aiming synergistic effects of bioactive compounds on melanogenic therapies.


Asunto(s)
Moraceae , Vitíligo , Cromatografía Liquida , Absorción Intestinal , Permeabilidad , Extractos Vegetales , Espectrometría de Masas en Tándem
13.
BMC Vet Res ; 16(1): 139, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32414366

RESUMEN

BACKGROUND: Metaldehyde is a toxic pesticide used mainly as a molluscicide, responsible for intoxication and deaths in both humans and animals. Accidental exposure to metaldehyde in dogs is considered rare, but severe. Data concerning clinical and veterinary forensic toxicology are largely incomplete, especially regarding case reports in dogs. The present work reports a complete and detailed description of a case from the history, clinical evolution, pathological exams and toxicological diagnosis in an accidental case of metaldehyde poisoning in dog. CASE PRESENTATION: An eleven-month-old, 3.0 kg, male German Spitz was presented for emergency care with acute vomiting and seizures 3 hours after suspected accidental ingestion of commercial molluscicide containing 3% metaldehyde (Lesmax®). The animal was in lateral recumbency and showed stuporous mentation, salivation, tonic-clonic status epilepticus, systemic tremors, bilateral miosis, absent palpebral, corneal, oculovestibular and gag reflexes, severely depressed spinal reflexes, dyspnea and tachycardia. Despite treatment, the patient progressed to comatose mentation and died. Necropsy examination revealed discrete lesions in the liver and central nervous system, while stomach examination revealed content of feed, activated charcoal and blue-green granules, compatible to the commercial formula of metaldehyde. Histology examination revealed extensive hemorrhage and severe centrolobular necrosis of the liver and tumefaction of Kupfer cells. Brain samples showed discrete hemorrhage and hyperemia. In order to confirm the diagnosis, samples from feces, stomach content, spleen, liver, heart, kidneys and brain were submitted gas chromatography analysis. Results confirmed the presence of metaldehyde in all samples. We describe clinicopathological abnormalities of a fatal case of metaldehyde poisoning in a dog, as well as postmortem diagnosis using gas chromatography. CONCLUSION: Metaldehyde poisoning is rarely reported, since the diagnosis is often difficult and the notifications scarce. To our knowledge, this is the first report describing clinical signs, pathological findings and chromatographic diagnosis. This report aims to contribute to the understanding of the pathogenesis of metaldehyde intoxication, to further explore veterinary forensic toxicology diagnosis.


Asunto(s)
Acetaldehído/análogos & derivados , Enfermedades de los Perros/inducido químicamente , Moluscocidas/envenenamiento , Acetaldehído/análisis , Acetaldehído/envenenamiento , Animales , Cromatografía de Gases/métodos , Cromatografía de Gases/veterinaria , Enfermedades de los Perros/patología , Perros , Resultado Fatal , Toxicología Forense , Masculino , Moluscocidas/análisis
14.
J Chromatogr A ; 1620: 460977, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32093903

RESUMEN

This study proposed the developed of a molecularly imprinted polymer for the extraction and determination of condensed tannins from the barks of Red Angico (Anadenanthera macrocarpa), Jabuticaba (Myrciaria jabuticaba) and Umbu (Spondias tuberosa). The polymer was synthesized using the condensed tannin extracted from the Red Angico bark as the template molecule, as well as, catechin standard solution. Selectivity and characterization tests for the molecularly imprinted polymers and a non-imprinted polymer were performed. The polymers were employed as extraction phase for the solid-phase extraction of condensed tannins from the studied samples. A higher imprinting coefficient was obtained for MIP synthesized from catechin standard solution as template. The intrinsic solid-phase extraction variables were evaluated and optimized. The developed methodology showed inter- and intra-day precisions of 6.7-10.1 and 4.6-8.4, respectively, and recovery values ranging from 101.9 to 105.5. The obtained limits of detection and quantification were 10 mg L-1 and 40 mg L-1, respectively. It is important to highlight that the developed methodology here was applied to common waste and tailings from Brazilian food industry. The results indicate that the polymers were capable to extract tannins from the evaluated samples, reducing method cost and time.


Asunto(s)
Proantocianidinas/aislamiento & purificación , Extracción en Fase Sólida/métodos , Brasil , Cromatografía Líquida de Alta Presión , Fabaceae/química , Industria de Alimentos , Impresión Molecular , Corteza de la Planta/química , Polímeros/química , Proantocianidinas/análisis
15.
J Chromatogr A ; 1603: 23-32, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31230878

RESUMEN

The analyses of drugs and metabolites in complex matrices have been widely studied in recent years. However, due to high levels endogenous compounds and matrix complexity, these analyses require a sample pre-treatment step. To this aim, two lab-made extractive phases were integrated to probe electrospray ionization mass spectrometry (PESI-MS) technique for direct analysis of illicit drugs in biological fluids and phorbol esters in Jatropha curcas extract. The polypyrrole (PPy) phase was electropolymerized onto a platinum wire surface by cyclic voltammetry. The molecularly imprinted polymer (MIP) was synthesized and adhered onto a stainless-steel needle with epoxy resin. The PPy-PESI-MS method showed to be linear in a concentration range from 1 to 500 µg L-1, with accuracy values between -2.1 and 14%, and precision values between 0.8 and 10.8%. The MIP-PESI-MS method showed to be linear in a concentration range from 0.9 to 30 mg L-1, with accuracy values between -1.6 and -15.3%, and precision values between 4.1 and 13.5%.


Asunto(s)
Impresión Molecular/métodos , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/aislamiento & purificación , Polímeros/química , Pirroles/química , Microextracción en Fase Sólida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Cocaína/análisis , Cocaína/aislamiento & purificación , Voluntarios Sanos , Humanos , Jatropha/química , Dietilamida del Ácido Lisérgico/análisis , Dietilamida del Ácido Lisérgico/aislamiento & purificación , Metanfetamina/análisis , Metanfetamina/aislamiento & purificación , N-Metil-3,4-metilenodioxianfetamina/análisis , N-Metil-3,4-metilenodioxianfetamina/aislamiento & purificación , Ésteres del Forbol/análisis , Ésteres del Forbol/aislamiento & purificación , Extractos Vegetales/análisis , Extractos Vegetales/aislamiento & purificación , Saliva/metabolismo , Acero Inoxidable/química , Urinálisis
16.
Talanta ; 178: 507-514, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136855

RESUMEN

Paper spray ionization (PSI) has some limitations such as low sensitivity and ionization suppression when complex samples are analyzed. The use of sample preparation devices directly coupled to MS can avoid these restrictions. Molecularly imprinted polymers (MIPs) are materials widely used as adsorbent in sample preparation methods such as solid-phase extraction and solid-phase microextraction, and they can provide specifics cavities with affinity to a target molecule. Here, we introduce a new MIP membrane spray ionization method combining MIP and PSI. MIP was synthesized directly on a cellulose membrane. Monuron and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used as template molecules in MIP synthesis for diuron and 2,4-D (2,4-dichlorophenoxyacetic acid) analyte sequesters, respectively. Apple, banana and grape methanolic extracts were used as matrices. The MIP membrane spray showed signal intensities of diuron and 2,4-D that were much higher compared to those obtained by non-imprinted polymers(NIP). Calibration curves exhibited R2 > 0.99 for diuron and 2,4-D in all fruit extracts analyzed. LODs were found less than 0.60µgL-1 and LLOQs were found less than 2.00µgL-1. The coefficients of variation and relative errors were less than 15% for almost all analyses. The apparent recovery test results ranged between 92,5% and 116.9%. Finally, the MIP membrane spray method was employed for the quantification of diuron and 2,4-D in real samples. Diuron contents were only found in three bananas (4.0, 6.5, and 9.9µgL-1). The proposed MIP membrane spray ionization method was straightforward, fast to carry out and provided satisfactory results for analyses of diuron and 2,4-D in apple, banana and grape samples.


Asunto(s)
Frutas/química , Herbicidas/análisis , Espectrometría de Masas/métodos , Residuos de Plaguicidas/análisis , Ácido 2,4-Diclorofenoxiacético/análisis , Diurona/análisis , Contaminación de Alimentos/análisis , Malus , Espectrometría de Masas/instrumentación , Membranas Artificiales , Impresión Molecular , Musa , Polímeros/química , Vitis
17.
Artículo en Inglés | MEDLINE | ID: mdl-19185550

RESUMEN

Poly(pyrrole) (PPY) coating was prepared on a stainless-steel (SS) wire for solid-phase microextraction (SPME) by electrochemical deposition (cyclic voltammetric). The PPY was evaluated by analyzing new-generation antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine, and sertraline) in plasma sample by SPME and liquid chromatography with UV detection (LC-UV). The effect of electrolyte solution (lithium perchlorate or tetrabutylammonium perchlorate) and the number of cycles (50, 100 or 200) applied during the polymerization process on the SPME performance was evaluated. Important factors in the optimization of SPME efficiency such as extraction time, temperature, pH, influence of plasma proteins on sorption mechanisms, and desorption conditions are discussed. The SPME-PPY/LC method showed to be linear in concentrations ranging from the limit of quantification (LOQ) to 1200 ng mL(-1). The LOQ values range from 16 to 25 ng mL(-1). The inter-day precision of the SPME-PPY/LC method presented coefficient of variation (CV) lower than 15%. Based on analytical validation results, the SPME-PPY/LC methodology showed to be adequate for antidepressant analysis, from therapeutic to toxic levels. In order to evaluate the proposed method for clinical use, the SPME-PPY/LC method was applied to the analysis of plasma samples from elderly depressed patients.


Asunto(s)
Antidepresivos/sangre , Cromatografía Liquida/métodos , Microextracción en Fase Sólida/métodos , Anciano , Antidepresivos/química , Brasil , Depresión/sangre , Humanos , Pirroles/química , Espectrofotometría Ultravioleta/métodos
18.
J Pharm Biomed Anal ; 48(2): 428-34, 2008 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-18486397

RESUMEN

A sensitive and reproducible stir bar-sorptive extraction and high-performance liquid chromatography-UV detection (SBSE/HPLC-UV) method for therapeutic drug monitoring of carbamazepine, carbamazepine-10,11-epoxide, phenytoin and phenobarbital in plasma samples is described and compared with a liquid:liquid extraction (LLE/HPLC-UV) method. Important factors in the optimization of SBSE efficiency such as pH, extraction time and desorption conditions (solvents, mode magnetic stir, mode ultrasonic stir, time and number of steps) assured recoveries ranging from 72 to 86%, except for phenytoin (62%). Separation was obtained using a reverse phase C18 column with UV detection (210nm). The mobile phase consisted of water:acetonitrile (78:22, v/v). The SBSE/HPLC-UV method was linear over a working range of 0.08-40.0microgmL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125-40.0microgmL(-1) for phenytoin, The intra-assay and inter-assay precision and accuracy were studied at three concentrations (1.0, 4.0 and 20.0microgmL(-1)). The intra-assay coefficients of variation (CVs) for all compounds were less than 8.8% and all inter-CVs were less than 10%. Limits of quantification were 0.08microgmL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125microgmL(-1) for phenytoin. No interference of the drugs normally associated with antiepileptic drugs was observed. Based on figures of merit results, the SBSE/HPLC-UV proved adequate for antiepileptic drugs analyses from therapeutic levels. This method was successfully applied to the analysis of real samples and was as effective as the LLE/HPLC-UV method.


Asunto(s)
Carbamazepina/análogos & derivados , Carbamazepina/sangre , Cromatografía Líquida de Alta Presión/métodos , Fenobarbital/sangre , Fenitoína/sangre , Monitoreo de Drogas , Humanos , Sensibilidad y Especificidad
19.
J Chromatogr B Analyt Technol Biomed Life Sci ; 850(1-2): 295-302, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17188948

RESUMEN

A sensitive and reproducible stir bar sorptive extraction and liquid chromatography (SBSE/LC-UV) method is described for the determination of sertraline, mirtazapine, fluoxetine, citalopram, paroxetine, imipramine, nortriptyline, amitriptyne, and desipramine in plasma samples. Important factors in the optimization of SBSE efficiency are discussed, such as extraction time, pH, ionic strength, influence of plasma proteins, and desorption conditions: solvents, modes (magnetic stir, ultrasonic), time, and number of desorption steps. The SBSE/LC-UV method showed to be linear in a concentration ranging from the limit of quantification (LOQ) to 1000.0 ng mL(-1). The LOQ values ranged from 10.0 ng mL(-1) to 40.0 ng mL(-1). The inter-day precision of the SBSE/LC-UV method presented coefficient of the variation lower than 15%. Based on figures of the merit results, the SBSE/LC-UV methodology showed to be adequate to the antidepressants analyses from therapeutic to toxic therapeutic levels. In order to evaluate the proposed method for clinical use, the SBSE/LC-UV method was applied to the analysis of plasma samples from elderly depressed patients.


Asunto(s)
Antidepresivos/sangre , Cromatografía Liquida/métodos , Espectrofotometría Ultravioleta/métodos , Humanos , Concentración de Iones de Hidrógeno , Concentración Osmolar , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...