Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nat Biotechnol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977924

RESUMEN

The use of modified nucleotides to suppress the interferon response and maintain translation of self-amplifying RNA (saRNA), which has been achieved for mRNA, has not yet succeeded. We identify modified nucleotides that, when substituted at 100% in saRNA, confer innate immune evasion and robust long-term protein expression, and when formulated as a vaccine, protect against lethal SARS-CoV-2 challenge in mice. This discovery advances saRNA therapeutics by enabling prolonged protein expression at low doses.

2.
Bol Med Hosp Infant Mex ; 81(Supl 1): 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39009030

RESUMEN

INTRODUCTION: Tyrosinemia type 1 is a rare disease with autosomal recessive inheritance, featuring various clinical manifestations. These may encompass acute neonatal liver failure, neonatal cholestatic syndrome, chronic hepatitis, cirrhosis, hepatocellular carcinoma, and, alternatively, kidney disorders like renal tubular acidosis, Fanconi syndrome, hypophosphatemic rickets, among other alterations. Diagnosis relies on detecting toxic metabolites in the blood and urine, ideally confirmed through molecular testing. METHOD: A consensus was reached with experts in the field of inborn errors of metabolism (EIM), including eight pediatric gastroenterologists, two EIM specialists, two geneticists, three pediatric nutritionists specialized in EIM, and a pediatric surgeon specializing in transplants. Six working groups were tasked with formulating statements and justifications, and 32 statements were anonymously voted on using the Likert scale and the Delphi method. The first virtual vote achieved an 80% consensus, with the remaining 20% determined in person. RESULTS: The statements were categorized into epidemiology, clinical presentation, diagnosis, nutritional and medical treatment, and genetic counseling. CONCLUSIONS: This consensus serves as a valuable tool for primary care physicians, pediatricians, and pediatric gastroenterologists, aiding in the prompt diagnosis and treatment of this disease. Its impact on the morbidity and mortality of patients with tyrosinemia type 1 is substantial.


INTRODUCCIÓN: La tirosinemia tipo 1 es una enfermedad rara, con herencia autosómica recesiva, con múltiples manifestaciones clínicas, que pueden comprender desde falla hepática aguda neonatal, síndrome colestásico neonatal, hepatitis crónica, cirrosis o hepatocarcinoma, hasta alteraciones renales como acidosis tubular renal, síndrome de Fanconi o raquitismo hipofosfatémico, entre otras. El diagnóstico se basa en la presencia de metabolitos tóxicos en la sangre y la orina, idealmente con la confirmación molecular de la enfermedad. MÉTODO: Se realizó un consenso con expertos en el área de los errores innatos del metabolismo (EIM): ocho gastroenterólogos pediatras, dos médicos especialistas en EIM, dos genetistas, tres nutriólogas pediatras especializadas en EIM y un cirujano pediatra especialista en trasplantes. Se formaron seis mesas de trabajo encargadas de desarrollar los enunciados con sus justificaciones y fueron votados anónimamente 32 enunciados en una escala Likert con un método Delphi. La primera votación fue virtual, obteniendo consenso del 80% de los enunciados, y la segunda fue presencial, obteniendo el 20% restante. RESULTADOS: Los enunciados fueron divididos en epidemiología, cuadro clínico, diagnóstico, tratamiento nutricional y médico, y consejo genético. CONCLUSIONES: Este consenso constituye una valiosa herramienta para los médicos de atención primaria, pediatras y gastroenterólogos pediátricos, ya que ayuda a diagnosticar y tratar rápidamente esta enfermedad. Su impacto en la morbilidad y mortalidad de los pacientes con tirosinemia tipo 1 es sustancial.


Asunto(s)
Consenso , Tirosinemias , Humanos , Tirosinemias/diagnóstico , Tirosinemias/terapia , México , Recién Nacido , Técnica Delphi , Asesoramiento Genético
3.
Surg Neurol Int ; 15: 143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741983

RESUMEN

Background: Primary central nervous system (CNS) lymphoma is a very rare extranodal non-Hodgkin lymphoma. The bilateral pattern, as we call it "mirror type", has been identified in other CNS lesions such as gliomas, metastases, and demyelinating lesions, so the differential diagnosis includes imaging studies such as magnetic resonance imaging contrasted with spectroscopy, ruling out immunodeficiency or metastatic disease. Case Description: A 65-year-old female presented progressing headache, loss of memory and language alterations, as well as sensory alterations. Neuroimaging showed the presence of two equidistant periventricular lesions at the level of both ventricular atria, a spectroscopy study suggestive of malignancy. Serological studies showed no evidence of immunodeficiency or the presence of positive tumor markers; however, a biopsy was performed, which revealed a histopathological result of primary lymphoma of the CNS. Conclusion: In neuro-oncology, primary CNS tumors with multiple lesions are rare, even more, the "mirror type" lesions. Lymphomas are lesions that can present in different ways on imaging and clinical presentation. These tumors that present a vector effect due to their size, perilesional edema, or that lead to loss of neurological function are highly discussed in diagnostic and surgical treatment. Due to their prognosis, action on diagnosis and treatment must be taken as quickly as hospital resources allow.

4.
J Infect Dis ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537273

RESUMEN

BACKGROUND: Bone infections from Staphylococcus aureus are notoriously difficult to treat and have high recurrence rates. Local antibiotic delivery systems hold the potential to achieve high in situ antibiotic concentrations, which are otherwise challenging to achieve via systemic administration. Existing solutions have been shown to confer suboptimal drug release and distribution. Here we present and evaluate an injectable in situ-forming depot system termed CarboCell. The CarboCell technology provides sustained and tuneable release of local high-dose antibiotics. METHODS: CarboCell formulations of levofloxacin or clindamycin with or without antimicrobial adjuvants cis-2-decenoic acid or cis-11-methyl-2-dodecenoic acid were tested in experimental rodent and porcine implant-associated osteomyelitis models. In the porcine models, debridement and treatment with CarboCell-formulated antibiotics was carried out without systemic antibiotic administration. The bacterial burden was determined by quantitative bacteriology. RESULTS: CarboCell formulations eliminated S. aureus in infected implant rat models. In the translational implant-associated pig model, surgical debridement, and injection of clindamycin-releasing CarboCell formulations resulted in pathogen-free bone tissues and implants in 9/12, and full eradication in 5/12 pigs. CONCLUSIONS: Sustained release of antimicrobial agents mediated by the CarboCell technology demonstrated promising therapeutic efficacy in challenging translational models and may be beneficial in combination with the current standard of care.

5.
J Environ Manage ; 350: 119637, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38000274

RESUMEN

Woodchips in stand-off pads for wintering cows have been applied in countries like Ireland and New Zealand. Their primary role is to protect soils by effectively filtering nutrients during wet conditions, while ensuring a healthy and comfortable environment for the cows. The stand-off pad concept has the potential to be adopted in Canada to provide year-long outdoor access to tie-stall dairy cows. The objective of this study was to evaluate the effect of alternative filtering materials and bed aeration under controlled laboratory conditions. Twelve biofilter columns (0.3 m in diameter and 1-m high) were installed in 12 environmentally-controlled chambers (1.2-m wide by 2.4-m long), and divided into four treatments: a bed of conventional woodchips or an alternative mix of organic materials (sphagnum peat moss, woodchips and biochar) with and without aeration (flux rate set at 0.6 m3/min/m2). Approximately 0.6 L of semi-synthetic dairy manure and 1 L of tap water were poured on the biofilters during two experimental periods of 4 weeks, simulating the effect of either winter or summer conditions (room temperature below or over 10 °C) on the retention of nutrients and fecal bacteria. Results showed that the alternative biofilters under both summer and winter conditions were more efficient in removing COD, SS, TN, and NO3-N than conventional biofilters (maximum efficiencies of 97.6%, 99.7%, 96.4%, and 98.4%, respectively). Similarly for E. coli, they achieved a minimum concentration of 1.8 Log10 CFU/100 ml. Conventional biofilters were more efficient for PO4-P removal with a maximum efficiency of 88.2%. Aeration did not have any significant effect under the tested temperature conditions. Additional factors such as media adaptation time as well as aeration flow during this period should be considered.


Asunto(s)
Escherichia coli , Estiércol , Femenino , Animales , Bovinos , Temperatura , Heces , Nutrientes , Filtración/métodos
6.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745375

RESUMEN

Self-amplifying RNA (saRNA) will revolutionize vaccines and in situ therapeutics by enabling protein expression for longer duration at lower doses. However, a major barrier to saRNA efficacy is the potent early interferon response triggered upon cellular entry, resulting in saRNA degradation and translational inhibition. Substitution of mRNA with modified nucleotides (modNTPs), such as N1-methylpseudouridine (N1mΨ), reduce the interferon response and enhance expression levels. Multiple attempts to use modNTPs in saRNA have been unsuccessful, leading to the conclusion that modNTPs are incompatible with saRNA, thus hindering further development. Here, contrary to the common dogma in the field, we identify multiple modNTPs that when incorporated into saRNA at 100% substitution confer immune evasion and enhance expression potency. Transfection efficiency enhances by roughly an order of magnitude in difficult to transfect cell types compared to unmodified saRNA, and interferon production reduces by >8 fold compared to unmodified saRNA in human peripheral blood mononuclear cells (PBMCs). Furthermore, we demonstrate expression of viral antigens in vitro and observe significant protection against lethal challenge with a mouse-adapted SARS-CoV-2 strain in vivo . A modified saRNA vaccine, at 100-fold lower dose than a modified mRNA vaccine, results in a statistically improved performance to unmodified saRNA and statistically equivalent performance to modified mRNA. This discovery considerably broadens the potential scope of self-amplifying RNA, enabling entry into previously impossible cell types, as well as the potential to apply saRNA technology to non-vaccine modalities such as cell therapy and protein replacement.

7.
Blood ; 141(13): 1597-1609, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36315912

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a T-cell malignancy characterized by cell subsets and enriched with leukemia-initiating cells (LICs). ß-Catenin modulates LIC activity in T-ALL. However, its role in maintaining established leukemia stem cells remains largely unknown. To identify functionally relevant protein interactions of ß-catenin in T-ALL, we performed coimmunoprecipitation followed by liquid chromatography-mass spectrometry. Here, we report that a noncanonical functional interaction of ß-catenin with the Forkhead box O3 (FOXO3) transcription factor positively regulates LIC-related genes, including the cyclin-dependent kinase 4, which is a crucial modulator of cell cycle and tumor maintenance. We also confirm the relevance of these findings using stably integrated fluorescent reporters of ß-catenin and FOXO3 activity in patient-derived xenografts, which identify minor subpopulations with enriched LIC activity. In addition, gene expression data at the single-cell level of leukemic cells of primary patients at the time of diagnosis and minimal residual disease (MRD) up to 30 days after the standard treatments reveal that the expression of ß-catenin- and FOXO3-dependent genes is present in the CD82+CD117+ cell fraction, which is substantially enriched with LICs in MRD as well as in early T-cell precursor ALL. These findings highlight key functional roles for ß-catenin and FOXO3 and suggest novel therapeutic strategies to eradicate aggressive cell subsets in T-ALL.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , beta Catenina , Humanos , beta Catenina/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología
8.
Surg Neurol Int ; 13: 459, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324915

RESUMEN

Background: During the past 2 years, the use of systemic corticosteroids has increased due to COVID-19 atypical pneumonia management. Similarly, an increase in mycotic infection cases has been reported during the same period as a consequence of immunosuppression caused by corticosteroid overuse. Mycotic clival osteomyelitis is a rare clinical entity which presumably has increased its incidence during the pandemic. Case Description: A 52-year-old woman who presented persistent headaches and unexplained weight loss after being hospitalized due to COVID-19 pneumonia treated with intravenous corticosteroids. Head computed tomography and magnetic resonance imaging showed extensive osteomyelitis at the clival region with no brain parenchyma involvement. Surgical excision through navigation-guided transnasal transclival endoscopic extended approach was performed for surgical debridement. Histopathological analysis revealed angulated hyphae, suggestive of Aspergillosis. Systemic antifungal treatment was administered for 30 consecutive days. Afterward, she was discharged without any remarkable neurological findings, reassessed during follow-up. Conclusion: The COVID-19 pandemic has had an effect on the reemergence of mycotic infections due to corticosteroid immunosuppression. Clival osteomyelitis secondary to mycotic infection is an exclusion diagnosis that we encourage to be highly suspected within the persisting COVID-19 pandemic.

9.
Nat Commun ; 13(1): 6772, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351924

RESUMEN

Follicular lymphoma (FL) is an indolent cancer of mature B-cells but with ongoing risk of transformation to more aggressive histology over time. Recurrent mutations associated with transformation have been identified; however, prognostic features that can be discerned at diagnosis could be clinically useful. We present here comprehensive profiling of both tumor and immune compartments in 155 diagnostic FL biopsies at single-cell resolution by mass cytometry. This revealed a diversity of phenotypes but included two recurrent patterns, one which closely resembles germinal center B-cells (GCB) and another which appears more related to memory B-cells (MB). GCB-type tumors are enriched for EZH2, TNFRSF14, and MEF2B mutations, while MB-type tumors contain increased follicular helper T-cells. MB-type and intratumoral phenotypic diversity are independently associated with increased risk of transformation, supporting biological relevance of these features. Notably, a reduced 26-marker panel retains sufficient information to allow phenotypic profiling of future cohorts by conventional flow cytometry.


Asunto(s)
Linfoma Folicular , Humanos , Linfoma Folicular/genética , Células B de Memoria , Centro Germinal , Linfocitos B , Mutación
10.
Front Oncol ; 12: 973402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176410

RESUMEN

Immune checkpoint inhibitors (ICI) are used in the treatment of urothelial and renal cell cancers. While some patients may have exceptional responses, better predictive biomarkers are needed. We profiled the circulating immune compartment of patients receiving ICI to identify possible immune markers associated with immunotherapy response or resistance. Peripheral blood samples were collected prior to, and 3 weeks after initiation of ICI. Using mass cytometry, 26 distinct immune populations were identified. Responders to immune checkpoint inhibitors had higher frequencies of naïve CD4+ T-cells, and lower frequencies of CD161+ Th17 cells and CCR4+ Th2 cells. Non-responders had a higher frequency of circulating PD1+ T-cells at baseline; there was a subsequent decrease in frequency with exposure to ICI with a concomitant increase in Ki67 expression. Flow cytometry for cytokines and chemokine receptors showed that CD4+ T cells of non-responder patients expressed less CXCR4 and CCR7. In addition, their PD1- CD4+ T cells had higher TNFα and higher CCR4 expression, while their PD1+ CD4+ T cells had higher interferon γ and lower CCR4 expression. The role of γ/δ T-cells was also explored. In responders, these cells had higher levels of interferon γ, TNFα and CCR5. One patient with a complete response had markedly higher frequency of γ/δ T-cells at baseline, and an expansion of these cells after treatment. This case was analyzed using single-cell gene expression profiling. The bulk of the γ/δ T cells consisted of a single clone of Vγ9/Vδ2 cells both before and after expansion, although the expansion was polyclonal. Gene expression analysis showed that exposure to an ICI led to a more activated phenotype of the γ/δ T cells. In this study, the circulating immune compartment was shown to have potential for biomarker discovery. Its dynamic changes during treatment may be used to assess response before radiographic changes are apparent, and these changes may help us delineate mechanisms that underpin both response and resistance to ICI. It also hypothesizes a potential role for γ/δ T cells as effector cells in some cases.

11.
Blood Adv ; 6(16): 4675-4690, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35675517

RESUMEN

Multiplexed immune cell profiling of the tumor microenvironment (TME) in cancer has improved our understanding of cancer immunology, but complex spatial analyses of tumor-immune interactions in lymphoma are lacking. Here, we used imaging mass cytometry (IMC) on 33 cases of diffuse large B-cell lymphoma (DLBCL) to characterize tumor and immune cell architecture and correlate it to clinicopathological features such as cell of origin, gene mutations, and responsiveness to chemotherapy. To understand the poor response of DLBCL to immune checkpoint inhibitors (ICI), we compared our results to IMC data from Hodgkin lymphoma, a cancer highly responsive to ICI, and observed differences in the expression of PD-L1, PD-1, and TIM-3. We created a spatial classification of tumor cells and identified tumor-centric subregions of immune activation, immune suppression, and immune exclusion within the topology of DLBCL. Finally, the spatial analysis allowed us to identify markers such as CXCR3, which are associated with penetration of immune cells into immune desert regions, with important implications for engineered cellular therapies. This is the first study to integrate tumor mutational profiling, cell of origin classification, and multiplexed immuno-phenotyping of the TME into a spatial analysis of DLBCL at the single-cell level. We demonstrate that, far from being histopathologically monotonous, DLBCL has a complex tumor architecture, and that changes in tumor topology can be correlated with clinically relevant features. This analysis identifies candidate biomarkers and therapeutic targets such as TIM-3, CCR4, and CXCR3 that are relevant for combination treatment strategies in immuno-oncology and cellular therapies.


Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Linfoma de Células B Grandes Difuso/patología , Análisis Espacial , Microambiente Tumoral/genética
12.
Cell Rep ; 39(3): 110714, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35421379

RESUMEN

The human immunological mechanisms defining the clinical outcome of SARS-CoV-2 infection remain elusive. This knowledge gap is mostly driven by the lack of appropriate experimental platforms recapitulating human immune responses in a controlled human lung environment. Here, we report a mouse model (i.e., HNFL mice) co-engrafted with human fetal lung xenografts (fLX) and a myeloid-enhanced human immune system to identify cellular and molecular correlates of lung protection during SARS-CoV-2 infection. Unlike mice solely engrafted with human fLX, HNFL mice are protected against infection, severe inflammation, and histopathological phenotypes. Lung tissue protection from infection and severe histopathology associates with macrophage infiltration and differentiation and the upregulation of a macrophage-enriched signature composed of 11 specific genes mainly associated with the type I interferon signaling pathway. Our work highlights the HNFL model as a transformative platform to investigate, in controlled experimental settings, human myeloid immune mechanisms governing lung tissue protection during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Animales , COVID-19/genética , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Pulmón/patología , Macrófagos , Ratones , SARS-CoV-2
13.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34615710

RESUMEN

Lymphocyte-rich classic Hodgkin lymphoma (LR-CHL) is a rare subtype of Hodgkin lymphoma. Recent technical advances have allowed for the characterization of specific cross-talk mechanisms between malignant Hodgkin Reed-Sternberg (HRS) cells and different normal immune cells in the tumor microenvironment (TME) of CHL. However, the TME of LR-CHL has not yet been characterized at single-cell resolution. Here, using single-cell RNA sequencing (scRNA-seq), we examined the immune cell profile of 8 cell suspension samples of LR-CHL in comparison to 20 samples of the mixed cellularity (MC, 9 cases) and nodular sclerosis (NS, 11 cases) subtypes of CHL, as well as 5 reactive lymph node controls. We also performed multicolor immunofluorescence (MC-IF) on tissue microarrays from the same patients and an independent validation cohort of 31 pretreatment LR-CHL samples. ScRNA-seq analysis identified a unique CD4+ helper T cell subset in LR-CHL characterized by high expression of Chemokine C-X-C motif ligand 13 (CXCL13) and PD-1. PD-1+CXCL13+ T cells were significantly enriched in LR-CHL compared to other CHL subtypes, and spatial analyses revealed that in 46% of the LR-CHL cases these cells formed rosettes surrounding HRS cells. MC-IF analysis revealed CXCR5+ normal B cells in close proximity to CXCL13+ T cells at significantly higher levels in LR-CHL. Moreover, the abundance of PD-1+CXCL13+ T cells in the TME was significantly associated with shorter progression-free survival in LR-CHL (P = 0.032). Taken together, our findings strongly suggest the pathogenic importance of the CXCL13/CXCR5 axis and PD-1+CXCL13+ T cells as a treatment target in LR-CHL.


Asunto(s)
Linfocitos B/metabolismo , Quimiocina CXCL13/metabolismo , Enfermedad de Hodgkin/patología , Receptores CXCR5/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Antígeno B7-H1/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Ganglios Linfáticos/citología , Receptor de Muerte Celular Programada 1/metabolismo , RNA-Seq , Células de Reed-Sternberg/patología , Análisis de la Célula Individual , Microambiente Tumoral/inmunología
14.
Sci Transl Med ; 13(606)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380769

RESUMEN

Many women risk unintended pregnancy because of medical contraindications or dissatisfaction with contraceptive methods, including real and perceived side effects associated with the use of exogenous hormones. We pursued direct vaginal delivery of sperm-binding monoclonal antibodies (mAbs) that can limit progressive sperm motility in the female reproductive tract as a strategy for effective nonhormonal contraception. Here, motivated by the greater agglutination potencies of polyvalent immunoglobulins but the bioprocessing ease and stability of immunoglobulin G (IgG), we engineered a panel of sperm-binding IgGs with 6 to 10 antigen-binding fragments (Fabs), isolated from a healthy immune-infertile woman against a unique surface antigen universally present on human sperm. These highly multivalent IgGs (HM-IgGs) were at least 10- to 16-fold more potent and faster at agglutinating sperm than the parent IgG while preserving the crystallizable fragment (Fc) of IgG that mediates trapping of individual spermatozoa in mucus. The increased potencies translated into effective (>99.9%) reduction of progressively motile sperm in the sheep vagina using as little as 33 µg of the 10-Fab HM-IgG. HM-IgGs were produced at comparable yields and had identical thermal stability to the parent IgG, with greater homogeneity. HM-IgGs represent not only promising biologics for nonhormonal contraception but also a promising platform for engineering potent multivalent mAbs for other biomedical applications.


Asunto(s)
Inmunoglobulina G , Motilidad Espermática , Animales , Anticoncepción , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas , Masculino , Embarazo , Ovinos , Espermatozoides
15.
Clin Cancer Res ; 27(19): 5401-5414, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34168051

RESUMEN

PURPOSE: The efficacy of EZH2 inhibition has been modest in the initial clinical exploration of diffuse large B-cell lymphoma (DLBCL), yet EZH2 inhibitors are well tolerated. Herein, we aimed to uncover genetic and pharmacologic opportunities to enhance the clinical efficacy of EZH2 inhibitors in DLBCL. EXPERIMENTAL DESIGN: We conducted a genome-wide sensitizing CRISPR/Cas9 screen with tazemetostat, a catalytic inhibitor of EZH2. The sensitizing effect of IKZF1 loss of function was then validated and leveraged for combination treatment with lenalidomide. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing analyses were performed to elucidate transcriptomic and epigenetic changes underlying synergy. RESULTS: We identified IKZF1 knockout as the top candidate for sensitizing DLBCL cells to tazemetostat. Treating cells with tazemetostat and lenalidomide, an immunomodulatory drug that selectively degrades IKAROS and AIOLOS, phenocopied the effects of the CRISPR/Cas9 screen. The combined drug treatment triggered either cell-cycle arrest or apoptosis in a broad range of DLBCL cell lines, regardless of EZH2 mutational status. Cell-line-based xenografts also showed slower tumor growth and prolonged survival in the combination treatment group. RNA-seq analysis revealed strong upregulation of interferon signaling and antiviral immune response signatures. Gene expression of key immune response factors such as IRF7 and DDX58 were induced in cells treated with lenalidomide and tazemetostat, with a concomitant increase of H3K27 acetylation at their promoters. Furthermore, transcriptome analysis demonstrated derepression of endogenous retroviruses after combination treatment. CONCLUSIONS: Our data underscore the synergistic interplay between IKAROS degradation and EZH2 inhibition on modulating epigenetic changes and ultimately enhancing antitumor effects in DLBCL.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Linfoma de Células B Grandes Difuso , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , Lenalidomida , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología
16.
Clin Cancer Res ; 27(14): 4089-4100, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33963000

RESUMEN

PURPOSE: Tumor-infiltrating lymphocytes (TIL) are strongly associated with survival in most cancers; however, the tumor-reactive subset that drives this prognostic effect remains poorly defined. CD39, CD103, and PD-1 have been independently proposed as markers of tumor-reactive CD8+ TIL in various cancers. We evaluated the phenotype, clonality, and prognostic significance of TIL expressing various combinations of these markers in high-grade serous ovarian cancer (HGSC), a malignancy in need of more effective immunotherapeutic approaches. EXPERIMENTAL DESIGN: Expression of CD39, CD103, PD-1, and other immune markers was assessed by high-dimensional flow cytometry, single-cell sequencing, and multiplex immunofluorescence of primary and matched pre/post-chemotherapy HGSC specimens. RESULTS: Coexpression of CD39, CD103, and PD-1 ("triple-positive" phenotype) demarcated subsets of CD8+ TIL and CD4+ regulatory T cells (Treg) with a highly activated/exhausted phenotype. Triple-positive CD8+ TIL exhibited reduced T-cell receptor (TCR) diversity and expressed genes involved in both cytolytic and humoral immunity. Triple-positive Tregs exhibited higher TCR diversity and a tumor-resident phenotype. Triple-positive TIL showed superior prognostic impact relative to TIL expressing other combinations of these markers. TIGIT was uniquely upregulated on triple-positive CD8+ effector cells relative to their CD4+ Treg counterparts. CONCLUSIONS: Coexpression of CD39, CD103, and PD-1 demarcates highly activated CD8+ and CD4+ TIL with inferred roles in cytolytic, humoral, and regulatory immune functions. Triple-positive TIL demonstrate exceptional prognostic significance and express compelling targets for combination immunotherapy, including PD-1, CD39, and TIGIT.


Asunto(s)
Cistadenocarcinoma Seroso/inmunología , Cistadenocarcinoma Seroso/patología , Linfocitos Infiltrantes de Tumor , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Antígenos CD/biosíntesis , Apirasa/biosíntesis , Cistadenocarcinoma Seroso/metabolismo , Femenino , Humanos , Cadenas alfa de Integrinas/biosíntesis , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Ováricas/metabolismo , Pronóstico , Receptor de Muerte Celular Programada 1/biosíntesis
17.
Front Immunol ; 12: 614676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897682

RESUMEN

The COVID-19 pandemic has drastically impacted work, economy, and way of life. Sensitive measurement of SARS-CoV-2 specific antibodies would provide new insight into pre-existing immunity, virus transmission dynamics, and the nuances of SARS-CoV-2 pathogenesis. To date, existing SARS-CoV-2 serology tests have limited utility due to insufficient reliable detection of antibody levels lower than what is typically present after several days of symptoms. To measure lower quantities of SARS-CoV-2 IgM, IgG, and IgA with higher resolution than existing assays, we developed a new ELISA protocol with a distinct plate washing procedure and timed plate development via use of a standard curve. Very low optical densities from samples added to buffer coated wells at as low as a 1:5 dilution are reported using this 'BU ELISA' method. Use of this method revealed circulating SARS-CoV-2 receptor binding domain (RBD) and nucleocapsid protein (N) reactive antibodies (IgG, IgM, and/or IgA) in 44 and 100 percent of pre-pandemic subjects, respectively, and the magnitude of these antibodies tracked with antibody levels of analogous viral proteins from endemic coronavirus (eCoV) strains. The disease status (HIV, SLE) of unexposed subjects was not linked with SARS-CoV-2 reactive antibody levels; however, quantities were significantly lower in subjects over 70 years of age compared with younger counterparts. Also, we measured SARS-CoV-2 RBD- and N- specific IgM, IgG, and IgA antibodies from 29 SARS-CoV-2 infected individuals at varying disease states, including 10 acute COVID-19 hospitalized subjects with negative serology results by the EUA approved Abbott IgG chemiluminescent microparticle immunoassay. Measurements of SARS-CoV-2 RBD- and N- specific IgM, IgG, IgA levels measured by the BU ELISA revealed higher signal from 9 of the 10 Abbott test negative COVID-19 subjects than all pre-pandemic samples for at least one antibody specificity/isotype, implicating improved serologic identification of SARS-CoV-2 infection via multi-parameter, high sensitive antibody detection. We propose that this improved ELISA protocol, which is straightforward to perform, low cost, and uses readily available commercial reagents, is a useful tool to elucidate new information about SARS-CoV-2 infection and immunity and has promising implications for improved detection of all analytes measurable by this platform.


Asunto(s)
Envejecimiento/inmunología , Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19 , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/metabolismo , Sensibilidad y Especificidad
18.
Blood ; 138(2): 136-148, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33684939

RESUMEN

Primary mediastinal large B-cell lymphoma (PMBL) is a type of aggressive B-cell lymphoma that typically affects young adults, characterized by presence of a bulky anterior mediastinal mass. Lymphomas with gene expression features of PMBL have been described in nonmediastinal sites, raising questions about how these tumors should be classified. Here, we investigated whether these nonmediastinal lymphomas are indeed PMBLs or instead represent a distinct group within diffuse large B-cell lymphoma (DLBCL). From a cohort of 325 de novo DLBCL cases, we identified tumors from patients without evidence of anterior mediastinal involvement that expressed a PMBL expression signature (nm-PMBLsig+; n = 16; 5%). A majority of these tumors expressed MAL and CD23, proteins typically observed in bona fide PMBL (bf-PMBL). Evaluation of clinical features of nm-PMBLsig+ cases revealed close associations with DLBCL, and a majority displayed a germinal center B cell-like cell of origin (GCB). In contrast to patients with bf-PMBL, patients with nm-PMBLsig+ presented at an older age and did not show pleural disease, and bone/bone marrow involvement was observed in 3 cases. However, although clinically distinct from bf-PMBL, nm-PMBLsig+ tumors resembled bf-PMBL at the molecular level, with upregulation of immune response, JAK-STAT, and NF-κB signatures. Mutational analysis revealed frequent somatic gene mutations in SOCS1, IL4R, ITPKB, and STAT6, as well as CD83 and BIRC3, with the latter genes significantly more frequently affected than in GCB DLBCL or bf-PMBL. Our data establish nm-PMBLsig+ lymphomas as a group within DLBCL with distinct phenotypic and genetic features. These findings may have implications for gene expression- and mutation-based subtyping of aggressive B-cell lymphomas and related targeted therapies.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Linfoma de Células B Grandes Difuso/genética , Neoplasias del Mediastino/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos B/inmunología , Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN , Femenino , Células HEK293 , Humanos , Evasión Inmune , Inmunofenotipificación , Quinasas Janus/metabolismo , Linfoma de Células B Grandes Difuso/patología , Linfoma no Hodgkin/genética , Linfoma no Hodgkin/patología , Masculino , Neoplasias del Mediastino/patología , Persona de Mediana Edad , Mutación/genética , Receptores de Interleucina-4/genética , Factores de Transcripción STAT/metabolismo , Hipermutación Somática de Inmunoglobulina/genética , Adulto Joven
19.
Blood ; 137(13): 1765-1776, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32961552

RESUMEN

The mutational landscape of gray zone lymphoma (GZL) has not yet been established, and differences from related entities are largely unknown. Here, we studied coding sequence mutations of 50 Epstein-Barr virus (EBV)-negative GZLs and 20 polymorphic EBV+ diffuse large B-cell lymphoma (DLBCL) not otherwise specified (poly-EBV-L) in comparison with classical Hodgkin lymphoma (cHL), primary mediastinal large B-cell lymphoma (PMBCL), and DLBCL. Exomes of 21 GZL and 7 poly-EBV-L cases, along with paired constitutional DNA, were analyzed as a discovery cohort, followed by targeted sequencing of 217 genes in an extension cohort of 29 GZL and 13 poly-EBV-L cases. GZL cases with thymic niche involvement (anterior mediastinal mass) exhibited a mutation profile closely resembling cHL and PMBCL, with SOCS1 (45%), B2M (45%), TNFAIP3 (35%), GNA13 (35%), LRRN3 (32%), and NFKBIA (29%) being the most recurrently mutated genes. In contrast, GZL cases without thymic niche involvement (n = 18) had a significantly distinct pattern that was enriched in mutations related to apoptosis defects (TP53 [39%], BCL2 [28%], BIRC6 [22%]) and depleted in GNA13, XPO1, or NF-κB signaling pathway mutations (TNFAIP3, NFKBIE, IKBKB, NFKBIA). They also exhibited more BCL2/BCL6 rearrangements compared with thymic GZL. Poly-EBV-L cases presented a distinct mutational profile, including STAT3 mutations and a significantly lower coding mutation load in comparison with EBV- GZL. Our study highlights characteristic mutational patterns in GZL associated with presentation in the thymic niche, suggesting a common cell of origin and disease evolution overlapping with related anterior mediastinal lymphomas.


Asunto(s)
Enfermedad de Hodgkin/genética , Linfoma de Células B Grandes Difuso/genética , Neoplasias del Mediastino/genética , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Femenino , Enfermedad de Hodgkin/complicaciones , Humanos , Linfoma de Células B Grandes Difuso/complicaciones , Masculino , Neoplasias del Mediastino/complicaciones , Persona de Mediana Edad , Timo/metabolismo , Adulto Joven
20.
Blood ; 137(16): 2196-2208, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33120427

RESUMEN

When the World Health Organization defined high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (HGBL-DH/TH) as a clinical category, rearrangements were the only structural variant (SV) incorporated. An "atypical double-hit" category has been proposed, encompassing tumors with concurrent MYC and BCL2 SVs other than cooccurring translocations (ie, copy number variations [CNVs]). Although the identification of a gene expression signature (DHITsig) shared among tumors harboring MYC and BCL2 rearrangements (HGBL-DH/TH-BCL2) has confirmed a common underlying biology, the biological implication of MYC and BCL2 CNVs requires further elucidation. We performed a comprehensive analysis of MYC and BCL2 SVs, as determined by fluorescent in situ hybridization (FISH), in a cohort of 802 de novo tumors with diffuse large B-cell lymphoma morphology. Although BCL2 CNVs were associated with increased expression, MYC CNVs were not. Furthermore, MYC and BCL2 CNVs, in the context of atypical double-hit, did not confer a similar gene expression profile as HGBL-DH/TH-BCL2. Finally, although MYC immunohistochemistry (IHC) has been proposed as a screening tool for FISH testing, 2 mechanisms were observed that uncoupled MYC rearrangement from IHC positivity: (1) low MYC messenger RNA expression; and (2) false-negative IHC staining mediated by a single-nucleotide polymorphism resulting in an asparagine-to-serine substitution at the 11th amino acid residue of MYC (MYC-N11S). Taken together, these results support the current exclusion of MYC and BCL2 CNVs from HGBL-DH/TH and highlight the ability of a molecular-based classification system to identify tumors with shared biology that FISH and IHC fail to fully capture.


Asunto(s)
Linfoma de Células B Grandes Difuso/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-myc/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Proteínas Proto-Oncogénicas c-myc/análisis , Transcriptoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...