RESUMEN
T-cell acute lymphoblastic leukemia (T-ALL) is a T-cell malignancy characterized by cell subsets and enriched with leukemia-initiating cells (LICs). ß-Catenin modulates LIC activity in T-ALL. However, its role in maintaining established leukemia stem cells remains largely unknown. To identify functionally relevant protein interactions of ß-catenin in T-ALL, we performed coimmunoprecipitation followed by liquid chromatography-mass spectrometry. Here, we report that a noncanonical functional interaction of ß-catenin with the Forkhead box O3 (FOXO3) transcription factor positively regulates LIC-related genes, including the cyclin-dependent kinase 4, which is a crucial modulator of cell cycle and tumor maintenance. We also confirm the relevance of these findings using stably integrated fluorescent reporters of ß-catenin and FOXO3 activity in patient-derived xenografts, which identify minor subpopulations with enriched LIC activity. In addition, gene expression data at the single-cell level of leukemic cells of primary patients at the time of diagnosis and minimal residual disease (MRD) up to 30 days after the standard treatments reveal that the expression of ß-catenin- and FOXO3-dependent genes is present in the CD82+CD117+ cell fraction, which is substantially enriched with LICs in MRD as well as in early T-cell precursor ALL. These findings highlight key functional roles for ß-catenin and FOXO3 and suggest novel therapeutic strategies to eradicate aggressive cell subsets in T-ALL.
Asunto(s)
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , beta Catenina , Humanos , beta Catenina/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologíaRESUMEN
Follicular lymphoma (FL) is an indolent cancer of mature B-cells but with ongoing risk of transformation to more aggressive histology over time. Recurrent mutations associated with transformation have been identified; however, prognostic features that can be discerned at diagnosis could be clinically useful. We present here comprehensive profiling of both tumor and immune compartments in 155 diagnostic FL biopsies at single-cell resolution by mass cytometry. This revealed a diversity of phenotypes but included two recurrent patterns, one which closely resembles germinal center B-cells (GCB) and another which appears more related to memory B-cells (MB). GCB-type tumors are enriched for EZH2, TNFRSF14, and MEF2B mutations, while MB-type tumors contain increased follicular helper T-cells. MB-type and intratumoral phenotypic diversity are independently associated with increased risk of transformation, supporting biological relevance of these features. Notably, a reduced 26-marker panel retains sufficient information to allow phenotypic profiling of future cohorts by conventional flow cytometry.
Asunto(s)
Linfoma Folicular , Humanos , Linfoma Folicular/genética , Células B de Memoria , Centro Germinal , Linfocitos B , MutaciónRESUMEN
Multiplexed immune cell profiling of the tumor microenvironment (TME) in cancer has improved our understanding of cancer immunology, but complex spatial analyses of tumor-immune interactions in lymphoma are lacking. Here, we used imaging mass cytometry (IMC) on 33 cases of diffuse large B-cell lymphoma (DLBCL) to characterize tumor and immune cell architecture and correlate it to clinicopathological features such as cell of origin, gene mutations, and responsiveness to chemotherapy. To understand the poor response of DLBCL to immune checkpoint inhibitors (ICI), we compared our results to IMC data from Hodgkin lymphoma, a cancer highly responsive to ICI, and observed differences in the expression of PD-L1, PD-1, and TIM-3. We created a spatial classification of tumor cells and identified tumor-centric subregions of immune activation, immune suppression, and immune exclusion within the topology of DLBCL. Finally, the spatial analysis allowed us to identify markers such as CXCR3, which are associated with penetration of immune cells into immune desert regions, with important implications for engineered cellular therapies. This is the first study to integrate tumor mutational profiling, cell of origin classification, and multiplexed immuno-phenotyping of the TME into a spatial analysis of DLBCL at the single-cell level. We demonstrate that, far from being histopathologically monotonous, DLBCL has a complex tumor architecture, and that changes in tumor topology can be correlated with clinically relevant features. This analysis identifies candidate biomarkers and therapeutic targets such as TIM-3, CCR4, and CXCR3 that are relevant for combination treatment strategies in immuno-oncology and cellular therapies.
Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Linfoma de Células B Grandes Difuso/patología , Análisis Espacial , Microambiente Tumoral/genéticaRESUMEN
Lymphocyte-rich classic Hodgkin lymphoma (LR-CHL) is a rare subtype of Hodgkin lymphoma. Recent technical advances have allowed for the characterization of specific cross-talk mechanisms between malignant Hodgkin Reed-Sternberg (HRS) cells and different normal immune cells in the tumor microenvironment (TME) of CHL. However, the TME of LR-CHL has not yet been characterized at single-cell resolution. Here, using single-cell RNA sequencing (scRNA-seq), we examined the immune cell profile of 8 cell suspension samples of LR-CHL in comparison to 20 samples of the mixed cellularity (MC, 9 cases) and nodular sclerosis (NS, 11 cases) subtypes of CHL, as well as 5 reactive lymph node controls. We also performed multicolor immunofluorescence (MC-IF) on tissue microarrays from the same patients and an independent validation cohort of 31 pretreatment LR-CHL samples. ScRNA-seq analysis identified a unique CD4+ helper T cell subset in LR-CHL characterized by high expression of Chemokine C-X-C motif ligand 13 (CXCL13) and PD-1. PD-1+CXCL13+ T cells were significantly enriched in LR-CHL compared to other CHL subtypes, and spatial analyses revealed that in 46% of the LR-CHL cases these cells formed rosettes surrounding HRS cells. MC-IF analysis revealed CXCR5+ normal B cells in close proximity to CXCL13+ T cells at significantly higher levels in LR-CHL. Moreover, the abundance of PD-1+CXCL13+ T cells in the TME was significantly associated with shorter progression-free survival in LR-CHL (P = 0.032). Taken together, our findings strongly suggest the pathogenic importance of the CXCL13/CXCR5 axis and PD-1+CXCL13+ T cells as a treatment target in LR-CHL.
Asunto(s)
Linfocitos B/metabolismo , Quimiocina CXCL13/metabolismo , Enfermedad de Hodgkin/patología , Receptores CXCR5/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Antígeno B7-H1/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Ganglios Linfáticos/citología , Receptor de Muerte Celular Programada 1/metabolismo , RNA-Seq , Células de Reed-Sternberg/patología , Análisis de la Célula Individual , Microambiente Tumoral/inmunologíaRESUMEN
PURPOSE: The efficacy of EZH2 inhibition has been modest in the initial clinical exploration of diffuse large B-cell lymphoma (DLBCL), yet EZH2 inhibitors are well tolerated. Herein, we aimed to uncover genetic and pharmacologic opportunities to enhance the clinical efficacy of EZH2 inhibitors in DLBCL. EXPERIMENTAL DESIGN: We conducted a genome-wide sensitizing CRISPR/Cas9 screen with tazemetostat, a catalytic inhibitor of EZH2. The sensitizing effect of IKZF1 loss of function was then validated and leveraged for combination treatment with lenalidomide. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing analyses were performed to elucidate transcriptomic and epigenetic changes underlying synergy. RESULTS: We identified IKZF1 knockout as the top candidate for sensitizing DLBCL cells to tazemetostat. Treating cells with tazemetostat and lenalidomide, an immunomodulatory drug that selectively degrades IKAROS and AIOLOS, phenocopied the effects of the CRISPR/Cas9 screen. The combined drug treatment triggered either cell-cycle arrest or apoptosis in a broad range of DLBCL cell lines, regardless of EZH2 mutational status. Cell-line-based xenografts also showed slower tumor growth and prolonged survival in the combination treatment group. RNA-seq analysis revealed strong upregulation of interferon signaling and antiviral immune response signatures. Gene expression of key immune response factors such as IRF7 and DDX58 were induced in cells treated with lenalidomide and tazemetostat, with a concomitant increase of H3K27 acetylation at their promoters. Furthermore, transcriptome analysis demonstrated derepression of endogenous retroviruses after combination treatment. CONCLUSIONS: Our data underscore the synergistic interplay between IKAROS degradation and EZH2 inhibition on modulating epigenetic changes and ultimately enhancing antitumor effects in DLBCL.
Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Linfoma de Células B Grandes Difuso , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , Lenalidomida , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patologíaRESUMEN
PURPOSE: Tumor-infiltrating lymphocytes (TIL) are strongly associated with survival in most cancers; however, the tumor-reactive subset that drives this prognostic effect remains poorly defined. CD39, CD103, and PD-1 have been independently proposed as markers of tumor-reactive CD8+ TIL in various cancers. We evaluated the phenotype, clonality, and prognostic significance of TIL expressing various combinations of these markers in high-grade serous ovarian cancer (HGSC), a malignancy in need of more effective immunotherapeutic approaches. EXPERIMENTAL DESIGN: Expression of CD39, CD103, PD-1, and other immune markers was assessed by high-dimensional flow cytometry, single-cell sequencing, and multiplex immunofluorescence of primary and matched pre/post-chemotherapy HGSC specimens. RESULTS: Coexpression of CD39, CD103, and PD-1 ("triple-positive" phenotype) demarcated subsets of CD8+ TIL and CD4+ regulatory T cells (Treg) with a highly activated/exhausted phenotype. Triple-positive CD8+ TIL exhibited reduced T-cell receptor (TCR) diversity and expressed genes involved in both cytolytic and humoral immunity. Triple-positive Tregs exhibited higher TCR diversity and a tumor-resident phenotype. Triple-positive TIL showed superior prognostic impact relative to TIL expressing other combinations of these markers. TIGIT was uniquely upregulated on triple-positive CD8+ effector cells relative to their CD4+ Treg counterparts. CONCLUSIONS: Coexpression of CD39, CD103, and PD-1 demarcates highly activated CD8+ and CD4+ TIL with inferred roles in cytolytic, humoral, and regulatory immune functions. Triple-positive TIL demonstrate exceptional prognostic significance and express compelling targets for combination immunotherapy, including PD-1, CD39, and TIGIT.
Asunto(s)
Cistadenocarcinoma Seroso/inmunología , Cistadenocarcinoma Seroso/patología , Linfocitos Infiltrantes de Tumor , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Antígenos CD/biosíntesis , Apirasa/biosíntesis , Cistadenocarcinoma Seroso/metabolismo , Femenino , Humanos , Cadenas alfa de Integrinas/biosíntesis , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Ováricas/metabolismo , Pronóstico , Receptor de Muerte Celular Programada 1/biosíntesisRESUMEN
When the World Health Organization defined high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (HGBL-DH/TH) as a clinical category, rearrangements were the only structural variant (SV) incorporated. An "atypical double-hit" category has been proposed, encompassing tumors with concurrent MYC and BCL2 SVs other than cooccurring translocations (ie, copy number variations [CNVs]). Although the identification of a gene expression signature (DHITsig) shared among tumors harboring MYC and BCL2 rearrangements (HGBL-DH/TH-BCL2) has confirmed a common underlying biology, the biological implication of MYC and BCL2 CNVs requires further elucidation. We performed a comprehensive analysis of MYC and BCL2 SVs, as determined by fluorescent in situ hybridization (FISH), in a cohort of 802 de novo tumors with diffuse large B-cell lymphoma morphology. Although BCL2 CNVs were associated with increased expression, MYC CNVs were not. Furthermore, MYC and BCL2 CNVs, in the context of atypical double-hit, did not confer a similar gene expression profile as HGBL-DH/TH-BCL2. Finally, although MYC immunohistochemistry (IHC) has been proposed as a screening tool for FISH testing, 2 mechanisms were observed that uncoupled MYC rearrangement from IHC positivity: (1) low MYC messenger RNA expression; and (2) false-negative IHC staining mediated by a single-nucleotide polymorphism resulting in an asparagine-to-serine substitution at the 11th amino acid residue of MYC (MYC-N11S). Taken together, these results support the current exclusion of MYC and BCL2 CNVs from HGBL-DH/TH and highlight the ability of a molecular-based classification system to identify tumors with shared biology that FISH and IHC fail to fully capture.
Asunto(s)
Linfoma de Células B Grandes Difuso/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-myc/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Proteínas Proto-Oncogénicas c-myc/análisis , Transcriptoma , Adulto JovenRESUMEN
The mutational landscape of gray zone lymphoma (GZL) has not yet been established, and differences from related entities are largely unknown. Here, we studied coding sequence mutations of 50 Epstein-Barr virus (EBV)-negative GZLs and 20 polymorphic EBV+ diffuse large B-cell lymphoma (DLBCL) not otherwise specified (poly-EBV-L) in comparison with classical Hodgkin lymphoma (cHL), primary mediastinal large B-cell lymphoma (PMBCL), and DLBCL. Exomes of 21 GZL and 7 poly-EBV-L cases, along with paired constitutional DNA, were analyzed as a discovery cohort, followed by targeted sequencing of 217 genes in an extension cohort of 29 GZL and 13 poly-EBV-L cases. GZL cases with thymic niche involvement (anterior mediastinal mass) exhibited a mutation profile closely resembling cHL and PMBCL, with SOCS1 (45%), B2M (45%), TNFAIP3 (35%), GNA13 (35%), LRRN3 (32%), and NFKBIA (29%) being the most recurrently mutated genes. In contrast, GZL cases without thymic niche involvement (n = 18) had a significantly distinct pattern that was enriched in mutations related to apoptosis defects (TP53 [39%], BCL2 [28%], BIRC6 [22%]) and depleted in GNA13, XPO1, or NF-κB signaling pathway mutations (TNFAIP3, NFKBIE, IKBKB, NFKBIA). They also exhibited more BCL2/BCL6 rearrangements compared with thymic GZL. Poly-EBV-L cases presented a distinct mutational profile, including STAT3 mutations and a significantly lower coding mutation load in comparison with EBV- GZL. Our study highlights characteristic mutational patterns in GZL associated with presentation in the thymic niche, suggesting a common cell of origin and disease evolution overlapping with related anterior mediastinal lymphomas.
Asunto(s)
Enfermedad de Hodgkin/genética , Linfoma de Células B Grandes Difuso/genética , Neoplasias del Mediastino/genética , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Femenino , Enfermedad de Hodgkin/complicaciones , Humanos , Linfoma de Células B Grandes Difuso/complicaciones , Masculino , Neoplasias del Mediastino/complicaciones , Persona de Mediana Edad , Timo/metabolismo , Adulto JovenRESUMEN
Diffuse large B-cell lymphoma (DLBCL) is a molecularly heterogeneous group of malignancies with frequent genetic abnormalities. G-quadruplex (G4) DNA structures may facilitate this genomic instability through association with activation-induced cytidine deaminase (AID), an antibody diversification enzyme implicated in mutation of oncogenes in B-cell lymphomas. Chromatin immunoprecipitation sequencing analyses in this study revealed that AID hotspots in both activated B cells and lymphoma cells in vitro were highly enriched for G4 elements. A representative set of these targeted sequences was validated for characteristic, stable G4 structure formation including previously unknown G4s in lymphoma-associated genes, CBFA2T3, SPIB, BCL6, HLA-DRB5 and MEF2C, along with the established BCL2 and MYC structures. Frequent genome-wide G4 formation was also detected for the first time in DLBCL patient-derived tissues using BG4, a structure-specific G4 antibody. Tumors with greater staining were more likely to have concurrent BCL2 and MYC oncogene amplification and BCL2 mutations. Ninety-seven percent of the BCL2 mutations occurred within G4 sites that overlapped with AID binding. G4 localization at sites of mutation, and within aggressive DLBCL tumors harboring amplified BCL2 and MYC, supports a role for G4 structures in events that lead to a loss of genomic integrity, a critical step in B-cell lymphomagenesis.
RESUMEN
Gray zone lymphoma (GZL), a B-cell lymphoma with features intermediate between large B-cell lymphoma (LBCL) and classic Hodgkin lymphoma (cHL), is a rare and poorly defined entity. Alongside GZL, a subset of Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) has been described with polymorphic/GZL-like morphology (polymorphic-EBV-L). To fill the important gap in our understanding of the pathogenic process underlying these entities, we performed a gene expression study of a large international cohort of GZL and polymorphic-EBV-L, combined with cHL and primary mediastinal large B-cell lymphoma (PMBCL) cases. In an unsupervised principal component analysis, GZL cases presented with intermediate scores in a spectrum between cHL and PMBCL, whereas polymorphic-EBV-L clustered distinctly. The main biological pathways underlying the GZL spectrum were related to cell cycle, reflecting tumor cell content, and extracellular matrix signatures related to the cellular tumor microenvironment. Differential expression analysis and phenotypic characterization of the tumor microenvironment highlighted the predominance of regulatory macrophages in GZL compared with cHL and PMBCL. Two distinct subtypes of GZL were distinguishable that were phenotypically reminiscent of PMBCL and DLBCL, and we observed an association of PMBCL-type GZL with clinical presentation in the "thymic" anatomic niche. In summary, gene expression profiling (GEP) enabled us to add precision to the GZL spectrum, describe the biological distinction compared with polymorphic-EBV-L, and distinguish cases with and without thymic involvement as 2 subgroups of GZL, namely PMBCL-like and DLBCL-like GZL.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Perfilación de la Expresión Génica , Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , Femenino , Herpesvirus Humano 4/genética , Enfermedad de Hodgkin/genética , Humanos , Linfoma de Células B Grandes Difuso/genética , Masculino , Persona de Mediana Edad , Microambiente TumoralRESUMEN
Diffuse large B-cell lymphoma (DLBCL) is the most common histologic subtype of non-Hodgkin lymphoma and is notorious for its clinical heterogeneity. Patient outcomes can be predicted by cell-of-origin (COO) classification, demonstrating that the underlying transcriptional signature of malignant B-cells informs biological behavior in the context of standard combination chemotherapy regimens. In the current study, we used mass cytometry (CyTOF) to examine tumor phenotypes at the protein level with single cell resolution in a collection of 27 diagnostic DLBCL biopsy specimens from treatment naïve patients. We found that malignant B-cells from each patient occupied unique regions in 37-dimensional phenotypic space with no apparent clustering of samples into discrete subtypes. Interestingly, variable MHC class II expression was found to be the greatest contributor to phenotypic diversity. Within individual tumors, a subset of cases showed multiple phenotypic subpopulations, and in one case, we were able to demonstrate direct correspondence between protein-level phenotypic subsets and DNA mutation-defined subclones. In summary, CyTOF analysis can resolve both intertumoral and intratumoral heterogeneity among primary samples and reveals that each case of DLBCL is unique and may be comprised of multiple, genetically distinct subclones. © 2019 International Society for Advancement of Cytometry.
Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/genética , MutaciónRESUMEN
Hodgkin lymphoma is characterized by an extensively dominant tumor microenvironment (TME) composed of different types of noncancerous immune cells with rare malignant cells. Characterization of the cellular components and their spatial relationship is crucial to understanding cross-talk and therapeutic targeting in the TME. We performed single-cell RNA sequencing of more than 127,000 cells from 22 Hodgkin lymphoma tissue specimens and 5 reactive lymph nodes, profiling for the first time the phenotype of the Hodgkin lymphoma-specific immune microenvironment at single-cell resolution. Single-cell expression profiling identified a novel Hodgkin lymphoma-associated subset of T cells with prominent expression of the inhibitory receptor LAG3, and functional analyses established this LAG3+ T-cell population as a mediator of immunosuppression. Multiplexed spatial assessment of immune cells in the microenvironment also revealed increased LAG3+ T cells in the direct vicinity of MHC class II-deficient tumor cells. Our findings provide novel insights into TME biology and suggest new approaches to immune-checkpoint targeting in Hodgkin lymphoma. SIGNIFICANCE: We provide detailed functional and spatial characteristics of immune cells in classic Hodgkin lymphoma at single-cell resolution. Specifically, we identified a regulatory T-cell-like immunosuppressive subset of LAG3+ T cells contributing to the immune-escape phenotype. Our insights aid in the development of novel biomarkers and combination treatment strategies targeting immune checkpoints.See related commentary by Fisher and Oh, p. 342.This article is highlighted in the In This Issue feature, p. 327.
Asunto(s)
Enfermedad de Hodgkin/genética , Análisis de la Célula Individual , Transcriptoma/genética , Microambiente Tumoral/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Enfermedad de Hodgkin/patología , Humanos , Masculino , Análisis de Secuencia de ARN , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Linfocitos T Reguladores/inmunología , Transcriptoma/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
Single-cell RNA sequencing has enabled the decomposition of complex tissues into functionally distinct cell types. Often, investigators wish to assign cells to cell types through unsupervised clustering followed by manual annotation or via 'mapping' to existing data. However, manual interpretation scales poorly to large datasets, mapping approaches require purified or pre-annotated data and both are prone to batch effects. To overcome these issues, we present CellAssign, a probabilistic model that leverages prior knowledge of cell-type marker genes to annotate single-cell RNA sequencing data into predefined or de novo cell types. CellAssign automates the process of assigning cells in a highly scalable manner across large datasets while controlling for batch and sample effects. We demonstrate the advantages of CellAssign through extensive simulations and analysis of tumor microenvironment composition in high-grade serous ovarian cancer and follicular lymphoma.
Asunto(s)
Perfilación de la Expresión Génica , Linfoma Folicular/patología , Probabilidad , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Microambiente Tumoral , Humanos , Linfoma Folicular/inmunologíaRESUMEN
Mechanistic studies in human cancer have relied heavily on cell lines and mouse models, but are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts; however, these are hampered by variable genetic background, inability to study early events, and practical issues with availability/reproducibility. We report here an efficient, reproducible model of T-cell leukemia in which lentiviral transduction of normal human cord blood yields aggressive leukemia that appears indistinguishable from natural disease. We utilize this synthetic model to uncover a role for oncogene-induced HOXB activation which is operative in leukemia cells-of-origin and persists in established tumors where it defines a novel subset of patients distinct from other known genetic subtypes and with poor clinical outcome. We show further that anterior HOXB genes are specifically activated in human T-ALL by an epigenetic mechanism and confer growth advantage in both pre-leukemia cells and established clones.
Asunto(s)
Proteínas de Homeodominio/metabolismo , Leucemia/metabolismo , Familia de Multigenes , Animales , Proliferación Celular , Epigénesis Genética , Femenino , Xenoinjertos , Proteínas de Homeodominio/genética , Humanos , Leucemia/genética , Leucemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos NOD , Modelos Genéticos , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismoRESUMEN
Primary mediastinal large B-cell lymphoma (PMBL) represents a clinically and pathologically distinct subtype of large B-cell lymphomas. Furthermore, molecular studies, including global gene expression profiling, have provided evidence that PMBL is more closely related to classical Hodgkin lymphoma (cHL). Although targeted sequencing studies have revealed a number of mutations involved in PMBL pathogenesis, a comprehensive description of disease-associated genetic alterations and perturbed pathways is still lacking. Here, we performed whole-exome sequencing of 95 PMBL tumors to inform on oncogenic driver genes and recurrent copy number alterations. The integration of somatic gene mutations with gene expression signatures provides further insights into genotype-phenotype interrelation in PMBL. We identified highly recurrent oncogenic mutations in the Janus kinase-signal transducer and activator of transcription and nuclear factor κB pathways, and provide additional evidence of the importance of immune evasion in PMBL (CIITA, CD58, B2M, CD274, and PDCD1LG2). Our analyses highlight the interferon response factor (IRF) pathway as a putative novel hallmark with frequent alterations in multiple pathway members (IRF2BP2, IRF4, and IRF8). In addition, our integrative analysis illustrates the importance of JAK1, RELB, and EP300 mutations driving oncogenic signaling. The identified driver genes were significantly more frequently mutated in PMBL compared with diffuse large B-cell lymphoma, whereas only a limited number of genes were significantly different between PMBL and cHL, emphasizing the close relation between these entities. Our study, performed on a large cohort of PMBL, highlights the importance of distinctive genetic alterations for disease taxonomy with relevance for diagnostic evaluation and therapeutic decision-making.
Asunto(s)
Genómica/métodos , Linfoma de Células B Grandes Difuso/genética , Neoplasias del Mediastino/genética , Adolescente , Adulto , Anciano , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma de Células B Grandes Difuso/patología , Masculino , Neoplasias del Mediastino/patología , Persona de Mediana Edad , Mutación , Integración de Sistemas , Adulto JovenRESUMEN
Targeted next-generation sequencing panels are increasingly used to assess the value of gene mutations for clinical diagnostic purposes. For assay development, amplicon-based methods have been preferentially used on the basis of short preparation time and small DNA input amounts. However, capture sequencing has emerged as an alternative approach because of high testing accuracy. We compared capture hybridization and amplicon sequencing approaches using fresh-frozen and formalin-fixed, paraffin-embedded tumor samples from eight lymphoma patients. Next, we developed a targeted sequencing pipeline using a 32-gene panel for accurate detection of actionable mutations in formalin-fixed, paraffin-embedded tumor samples of the most common lymphocytic malignancies: chronic lymphocytic leukemia, diffuse large B-cell lymphoma, and follicular lymphoma. We show that hybrid capture is superior to amplicon sequencing by providing deep more uniform coverage and yielding higher sensitivity for variant calling. Sanger sequencing of 588 variants identified specificity limits of thresholds for mutation calling, and orthogonal validation on 66 cases indicated 93% concordance with whole-genome sequencing. The developed pipeline and assay identified at least one actionable mutation in 91% of tumors from 219 lymphoma patients and revealed subtype-specific mutation patterns and frequencies consistent with the literature. This pipeline is an accurate and sensitive method for identifying actionable gene mutations in routinely acquired biopsy materials, suggesting further assessment of capture-based assays in the context of personalized lymphoma management.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Trastornos Linfoproliferativos/genética , Medicina de Precisión/métodos , Análisis de Secuencia de ADN/métodos , Biopsia , Estudios de Cohortes , Estudios de Factibilidad , Formaldehído , Frecuencia de los Genes , Genes Relacionados con las Neoplasias/genética , Humanos , Trastornos Linfoproliferativos/sangre , Trastornos Linfoproliferativos/patología , Mutación , Adhesión en Parafina , Sensibilidad y EspecificidadRESUMEN
Follicular lymphoma (FL) is an indolent disease but transforms in 2% to 3% of patients per year into aggressive, large cell lymphoma, a critical event in the course of the disease associated with increased lymphoma-related mortality. Early transformation cannot be accurately predicted at the time of FL diagnosis and the biology of transformed FL (TFL) is poorly understood. Here, we assembled a cohort of 126 diagnostic FL specimens including 40 patients experiencing transformation (<5 years) and 86 patients not experiencing transformation for at least 5 years. In addition, we assembled an overlapping cohort of 155 TFL patients, including 114 cases for which paired samples were available, and assessed temporal changes of routinely available biomarkers, outcome after transformation, as well as molecular subtypes of TFL. We report that the expression of IRF4 is an independent predictor of early transformation (Hazard ratio, 13.3; P < .001). We also show that composite histology at the time of transformation predicts favorable prognosis. Moreover, applying the Lymph2Cx digital gene expression assay for diffuse large B-cell lymphoma (DLBCL) cell-of-origin determination to 110 patients with DLBCL-like TFL, we demonstrate that TFL is of the germinal-center B-cell-like subtype in the majority of cases (80%) but that a significant proportion of cases is of the activated B-cell-like (ABC) subtype (16%). These latter cases are commonly negative for BCL2 translocation and arise preferentially from BCL2 translocation-negative and/or IRF4-expressing FLs. Our study demonstrates the existence of molecular heterogeneity in TFL as well as its relationship to the antecedent FL.
Asunto(s)
Linfocitos B/patología , Transformación Celular Neoplásica/patología , Linfoma Folicular/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Linfocitos B/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Antígenos CD79/genética , Transformación Celular Neoplásica/genética , Femenino , Centro Germinal/metabolismo , Centro Germinal/patología , Guanilato Ciclasa/genética , Humanos , Linfoma Folicular/genética , Masculino , Persona de Mediana Edad , Mutación , Factor 88 de Diferenciación Mieloide/genéticaRESUMEN
PURPOSE: We aimed to assess the prognostic significance of follicular lymphoma-associated macrophages in the era of rituximab treatment and maintenance. EXPERIMENTAL DESIGN: We applied immunohistochemistry for CD68 and CD163 to two large tissue microarrays (TMA). The first TMA included samples from 186 patients from the BC Cancer Agency (BCCA) who had been treated with first-line systemic treatment including rituximab, cyclophosphamide, vincristine, and prednisone. The second contained 395 samples from PRIMA trial patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and randomized to rituximab maintenance or observation. Macrophage infiltration was assessed using Aperio image analysis. Each of the two cohorts was randomly split into training/validation sets. RESULTS: An increased CD163-positive pixel count was predictive of adverse outcome in the BCCA dataset [5-year progression-free survival (PFS) 38% vs. 72%, respectively, P = 0.004 in the training cohort and 5-year PFS 29% vs. 61%, respectively, P = 0.004 in the validation cohort]. In the PRIMA trial, an increased CD163 pixel count was associated with favorable outcome (5-year PFS 60% vs. 44%, respectively, P = 0.011 in the training cohort and 5-year PFS 55% vs. 37%, respectively, P = 0.030 in the validation cohort). CONCLUSIONS: CD163-positive macrophages predict outcome in follicular lymphoma, but their prognostic impact is highly dependent on treatment received.
Asunto(s)
Antígenos CD/biosíntesis , Antígenos de Diferenciación Mielomonocítica/biosíntesis , Linfoma Folicular/tratamiento farmacológico , Linfoma Folicular/genética , Pronóstico , Receptores de Superficie Celular/biosíntesis , Rituximab/administración & dosificación , Anciano , Antígenos CD/genética , Antígenos de Diferenciación Mielomonocítica/genética , Ciclofosfamida/administración & dosificación , Supervivencia sin Enfermedad , Doxorrubicina/administración & dosificación , Femenino , Humanos , Linfoma Folicular/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Receptores de Superficie Celular/genética , Análisis de Matrices Tisulares , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Vincristina/administración & dosificaciónRESUMEN
It has been proposed that guanine-rich DNA forms four-stranded structures in vivo called G-quadruplexes or G4 DNA. G4 DNA has been implicated in several biological processes, but tools to study G4 DNA structures in cells are limited. Here we report the development of novel murine monoclonal antibodies specific for different G4 DNA structures. We show that one of these antibodies designated 1H6 exhibits strong nuclear staining in most human and murine cells. Staining intensity increased on treatment of cells with agents that stabilize G4 DNA and, strikingly, cells deficient in FANCJ, a G4 DNA-specific helicase, showed stronger nuclear staining than controls. Our data strongly support the existence of G4 DNA structures in mammalian cells and indicate that the abundance of such structures is increased in the absence of FANCJ. We conclude that monoclonal antibody 1H6 is a valuable tool for further studies on the role of G4 DNA in cell and molecular biology.