RESUMEN
Confounding variables are a recurrent challenge for causal discovery and inference. In many situations, complex causal mechanisms only manifest themselves in extreme events, or take simpler forms in the extremes. Stimulated by data on extreme river flows and precipitation, we introduce a new causal discovery methodology for heavy-tailed variables that allows the effect of a known potential confounder to be almost entirely removed when the variables have comparable tails, and also decreases it sufficiently to enable correct causal inference when the confounder has a heavier tail. We also introduce a new parametric estimator for the existing causal tail coefficient and a permutation test. Simulations show that the methods work well and the ideas are applied to the motivating dataset. Supplementary Information: The online version contains supplementary material available at 10.1007/s10687-022-00456-4.
RESUMEN
We provide an analysis of a randomly grown 2-d network which models the morphological growth of dendritic and axonal arbors. From the stochastic geometry of this model we derive a dynamic graph of potential synaptic connections. We estimate standard network parameters such as degree distribution, average shortest path length and clustering coefficient, considering all these parameters as functions of time. Our results show that even a simple model with just a few parameters is capable of representing a wide spectra of architecture, capturing properties of well-known models, such as random graphs or small world networks, depending on the time of the network development. The introduced model allows not only rather straightforward simulations but it is also amenable to a rigorous analysis. This provides a base for further study of formation of synaptic connections on such networks and their dynamics due to plasticity.