Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Curr Top Dev Biol ; 158: 203-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670706

RESUMEN

Skeletal muscle is composed of a variety of tissue and non-tissue resident cells that participate in homeostasis. In particular, the muscle stem cell niche is a dynamic system, requiring direct and indirect communications between cells, involving local and remote cues. Interactions within the niche must happen in a timely manner for the maintenance or recovery of the homeostatic niche. For instance, after an injury, pro-myogenic cues delivered too early will impact on muscle stem cell proliferation, delaying the repair process. Within the niche, myofibers, endothelial cells, perivascular cells (pericytes, smooth muscle cells), fibro-adipogenic progenitors, fibroblasts, and immune cells are in close proximity with each other. Each cell behavior, membrane profile, and secretome can interfere with muscle stem cell fate and skeletal muscle regeneration. On top of that, the muscle stem cell niche can also be modified by extra-muscle (remote) cues, as other tissues may act on muscle regeneration via the production of circulating factors or the delivery of cells. In this review, we highlight recent publications evidencing both local and remote effectors of the muscle stem cell niche.


Asunto(s)
Comunicación Celular , Músculo Esquelético , Nicho de Células Madre , Animales , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Humanos , Nicho de Células Madre/fisiología , Regeneración/fisiología , Desarrollo de Músculos , Diferenciación Celular
2.
FASEB J ; 37(9): e23107, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37534948

RESUMEN

Post-injury skeletal muscle regeneration requires interactions between myogenic and non-myogenic cells. Our knowledge on the regeneration process is mainly based on models using toxic, chemical, or physical (e.g., based on either muscle freezing or crushing) injury. Strikingly, the time course and magnitude of changes in the number of cells involved in muscle regeneration have been poorly described in relation to mild and severe muscle damage induced by electrically-evoked lengthening contractions. We investigated for the first time the kinetics and magnitude of changes in mononuclear cells in relation to the extent of muscle damage. Mild and severe injury were induced in vivo in the mouse gastrocnemius muscle by 1 and 30 electrically-evoked lengthening contractions, respectively. Several days after muscle damage, functional analysis of maximal torque production and histological investigations were performed to assess the related cellular changes. Torque recovery was faster after mild injury than after severe muscle damage. More necrotic and regenerating myofibers were observed after severe muscle damage as compared with mild injury, illustrating an association between functional and histological alterations. The kinetics of changes in muscle stem cells (total, proliferating, and differentiating), endothelial cells, fibro-adipogenic progenitors (FAPs), and macrophages in the regenerating muscle was similar in mild and severe models. However, the magnitude of changes in the number of differentiating muscle stem cells, hematopoietic cells, among which macrophages, and FAPs was higher in severe muscle damage. Collectively, our results show that the amount of myogenic and non-myogenic cells varies according to the extent of skeletal muscle injury to ensure efficient skeletal muscle regeneration while the kinetics of changes is independent of muscle tissue alterations. The possibility to experimentally modulate the extent of muscle damage will be useful to further investigate the cellular and molecular events involved in muscle regeneration.


Asunto(s)
Células Endoteliales , Músculo Esquelético , Ratones , Animales , Cinética , Músculo Esquelético/patología , Contracción Muscular , Adipogénesis
3.
Cell Death Discov ; 9(1): 224, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402716

RESUMEN

Lack of dystrophin expression is the underlying genetic basis for Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2-mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2-mdx muscles is associated with an enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports the excessive accumulation of fibroadipogenic progenitors (FAPs), leading to increased fibrosis. Unexpectedly, the extent of damage and degeneration in juvenile D2-mdx muscle is significantly reduced in adults, and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance regenerative myogenesis in the adult D2-mdx muscle, reaching levels comparable to the milder B10-mdx model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with juvenile D2-mdx FAPs reduces their fusion efficacy. Wild-type juvenile D2 mice also manifest regenerative myogenic deficit and glucocorticoid treatment improves their muscle regeneration. Our findings indicate that aberrant stromal cell responses contribute to poor regenerative myogenesis and greater muscle degeneration in juvenile D2-mdx muscles and reversal of this reduces pathology in adult D2-mdx muscle, identifying these responses as a potential therapeutic target for the treatment of DMD.

4.
bioRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034785

RESUMEN

Lack of dystrophin is the genetic basis for the Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2- mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2- mdx muscles is associated with enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports excessive accumulation of fibroadipogenic progenitors (FAPs). Unexpectedly, the extent of damage and degeneration of juvenile D2- mdx muscle is reduced in adults and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance myogenesis in the adult D2- mdx muscle, reaching levels comparable to the milder (B10- mdx ) mouse model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with the juvenile D2- mdx FAPs reduced their fusion efficacy and in vivo glucocorticoid treatment of juvenile D2 mouse improved muscle regeneration. Our findings indicate that aberrant stromal cell response contributes to poor myogenesis and greater muscle degeneration in dystrophic juvenile D2- mdx muscles and reversal of this reduces pathology in adult D2- mdx mouse muscle, identifying these as therapeutic targets to treat dystrophic DMD muscles.

5.
Methods Mol Biol ; 2640: 57-71, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995587

RESUMEN

Adult muscle stem cells rebuild myofibers after damage. Although they are highly powerful to implement the adult myogenic program, they need environmental cues provided by surrounding cells for efficient and complete regeneration. Muscle stem cell environment includes fibroadipogenic precursors, vascular cells, and macrophages. A way to decipher the complexity of the interactions muscle stem cells establish with their neighborhood is to co-culture cells freshly isolated from the muscle and assess the impact of one cell type on the behavior/fate of the other cell type. Here, we present a protocol allowing the isolation of primary muscle stem cells, macrophages, and fibroadipogenic precursors by Fluorescence Activated Cell Sorting (FACS) or Magnetic Cell Separation (MACS), together with co-culture methods using a specific setup for a short time window to keep as much as possible the in vivo properties of the isolated cells.


Asunto(s)
Células Madre Adultas , Músculo Esquelético , Humanos , Adulto , Técnicas de Cocultivo , Diferenciación Celular , Músculo Esquelético/metabolismo , Macrófagos/metabolismo
6.
EMBO Rep ; 24(2): e55363, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36520372

RESUMEN

Macrophages are key cells after tissue damage since they mediate both acute inflammatory phase and regenerative inflammation by shifting from pro-inflammatory to restorative cells. Glucocorticoids (GCs) are the most potent anti-inflammatory hormone in clinical use, still their actions on macrophages are not fully understood. We show that the metabolic sensor AMP-activated protein kinase (AMPK) is required for GCs to induce restorative macrophages. GC Dexamethasone activates AMPK in macrophages and GC receptor (GR) phosphorylation is decreased in AMPK-deficient macrophages. Loss of AMPK in macrophages abrogates the GC-induced acquisition of their repair phenotype and impairs GC-induced resolution of inflammation in vivo during post-injury muscle regeneration and acute lung injury. Mechanistically, two categories of genes are impacted by GC treatment in macrophages. Firstly, canonical cytokine regulation by GCs is not affected by AMPK loss. Secondly, AMPK-dependent GC-induced genes required for the phenotypic transition of macrophages are co-regulated by the transcription factor FOXO3, an AMPK substrate. Thus, beyond cytokine regulation, GR requires AMPK-FOXO3 for immunomodulatory actions in macrophages, linking their metabolic status to transcriptional control in regenerative inflammation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucocorticoides , Humanos , Glucocorticoides/farmacología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo
7.
Physiol Rep ; 10(19): e15480, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36200266

RESUMEN

Skeletal muscle is a plastic tissue that regenerates ad integrum after injury and adapts to raise mechanical loading/contractile activity by increasing its mass and/or myofiber size, a phenomenon commonly refers to as skeletal muscle hypertrophy. Both muscle regeneration and hypertrophy rely on the interactions between muscle stem cells and their neighborhood, which include inflammatory cells, and particularly macrophages. This review first summarizes the role of macrophages in muscle regeneration in various animal models of injury and in response to exercise-induced muscle damage in humans. Then, the potential contribution of macrophages to skeletal muscle hypertrophy is discussed on the basis of both animal and human experiments. We also present a brief comparative analysis of the role of macrophages during muscle regeneration versus hypertrophy. Finally, we summarize the current knowledge on the impact of different immunomodulatory strategies, such as heat therapy, cooling, massage, nonsteroidal anti-inflammatory drugs and resolvins, on skeletal muscle regeneration and their potential impact on muscle hypertrophy.


Asunto(s)
Músculo Esquelético , Regeneración , Animales , Antiinflamatorios , Humanos , Hipertrofia , Macrófagos , Músculo Esquelético/fisiología , Plásticos
8.
Antioxidants (Basel) ; 11(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36009247

RESUMEN

Atherosclerosis is associated with low-grade inflammation involving circulating monocytes. It has been shown that the levels of intermediate pro-inflammatory monocytes are associated with cardiovascular mortality and risk of ischemic stroke. It also has been shown that physical activity (PA) decreases inflammation markers, incidence of strokes, and mortality. In this cross-sectional study, we tested the effect of PA on circulating monocytes phenotype rate. A total of 29 patients with a carotid stenosis > 50% were recruited. Levels of physical activity (MET.min/week) were measured by the GPAQ questionnaire, arterial samples of blood were collected to analyze monocyte phenotype (classical, intermediate and non-classical) assessed by flow cytometry, and venous blood samples were used to dose antioxidant activity and oxidative damage. Antioxidant capacity was reduced and oxidative damage increased in patients. There was a significant decrease in the percentage of classical and intermediate monocytes in moderately active patients as compared with non-active and highly active patients. Inversely, the rate of non-classical monocytes increased in moderately active patients. Intense PA appears to blunt the beneficial effects of moderate PA. Our study also suggests that PA could be beneficial in such patients by reducing the rate of intermediate monocytes known to predict the risk of ischemic stroke and by increasing the non-classical monocytes involved in lesions' healing. Nevertheless, a longitudinal study would be necessary to confirm this hypothesis.

9.
Science ; 377(6606): 666-669, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926054

RESUMEN

Muscle stem cells (MuSCs) reside in a specialized niche that ensures their regenerative capacity. Although we know that innate immune cells infiltrate the niche in response to injury, it remains unclear how MuSCs adapt to this altered environment for initiating repair. Here, we demonstrate that inflammatory cytokine signaling from the regenerative niche impairs the ability of quiescent MuSCs to reenter the cell cycle. The histone H3 lysine 27 (H3K27) demethylase JMJD3, but not UTX, allowed MuSCs to overcome inhibitory inflammation signaling by removing trimethylated H3K27 (H3K27me3) marks at the Has2 locus to initiate production of hyaluronic acid, which in turn established an extracellular matrix competent for integrating signals that direct MuSCs to exit quiescence. Thus, JMJD3-driven hyaluronic acid synthesis plays a proregenerative role that allows MuSC adaptation to inflammation and the initiation of muscle repair.


Asunto(s)
Ácido Hialurónico , Inflamación , Histona Demetilasas con Dominio de Jumonji , Músculo Esquelético , Mioblastos Esqueléticos , Regeneración , Nicho de Células Madre , Animales , Ciclo Celular , Histonas , Humanos , Ácido Hialurónico/biosíntesis , Inflamación/metabolismo , Interferón gamma/metabolismo , Interleucina-6 , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/metabolismo
10.
Immunity ; 55(7): 1156-1158, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830825

RESUMEN

Apoptotic-cell uptake (efferocytosis) by dendritic cells (DCs) has been mainly linked to their antigen presentation property. In a recent issue of Nature, Maschalidi et al. identified a break to efferocytosis in DCs, the inhibition of which improves skin debris cleansing after a wound, accelerating healing.


Asunto(s)
Apetito , Células Dendríticas , Presentación de Antígeno , Piel , Cicatrización de Heridas
11.
Exerc Immunol Rev ; 28: 29-46, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35452394

RESUMEN

BACKGROUND: The term immunometabolism describes cellular and molecular metabolic processes that control the immune system and the associated immune responses. Acute exercise and regular physical activity have a substantial influence on the metabolism and the immune system, so that both processes are closely associated and influence each other bidirectionally. SCOPE OF REVIEW: We limit the review here to focus on metabolic phenotypes and metabolic plasticity of T cells and macrophages to describe the complex role of acute exercise stress and regular physical activity on these cell types. The metabolic and immunological consequences of the social problem of inactivity and how, conversely, an active lifestyle can break this vicious circle, are then described. Finally, these aspects are evaluated against the background of an aging society. MAJOR CONCLUSIONS: T cells and macrophages show high sensitivity to changes in their metabolic environment, which indirectly or directly affects their central functions. Physical activity and sedentary behaviour have an important influence on metabolic status, thereby modifying immune cell phenotypes and influencing immunological plasticity. A detailed understanding of the interactions between acute and chronic physical activity, sedentary behaviour, and the metabolic status of immune cells, can help to target the dysregulated immune system of people who live in a much too inactive society.


Asunto(s)
Ejercicio Físico , Linfocitos T , Metabolismo Energético , Humanos , Macrófagos/metabolismo , Conducta Sedentaria
12.
Neurology ; 98(21): e2108-e2119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35351794

RESUMEN

BACKGROUND AND OBJECTIVES: The idiopathic inflammatory myopathy dermatomyositis is an acquired disease that involves muscle, lung, and skin impairments. Patients with dermatomyositis show a wide range of severity of proximal skeletal muscle weakness, associated with inflammatory infiltrates, vasculitis, capillary dropout, and perifascicular myofiber atrophy. Muscles of patients with dermatomyositis show signs of muscle regeneration. Because muscle stem cells (MuSCs) are responsible for myofiber repair, we wondered whether the proliferative properties of MuSCs are altered in dermatomyositis muscle. We investigated the role of type I interferon (IFN-I) in this process because dermatomyositis is associated with sustained inflammation with high IFN-I levels. METHODS: MuSCs isolated from normal muscles and those from adult and juvenile patients with dermatomyositis were grown in culture and analyzed in vitro for their proliferating properties, myogenic capacities, and senescence. Gain- and loss-of-function experiments were performed to assess the role of IFN-I signaling in the proliferative capacities of MuSCs. RESULTS: MuSCs derived from 8 adult patients with dermatomyositis (DM-MuSCs) (5 severe form and 3 mild form, established from histologic evaluation), from 3 patients with juvenile dermatomyositis, and from normal muscle were used to analyze their myogenesis in vitro. DM-MuSCs exhibited strongly reduced proliferating capacities as compared with healthy MuSCs (-31% to -43% for mild and severe dermatomyositis, respectively), leading to poor myotube formation (-36% to -71%). DM-MuSCs were enriched in senescent, ß-galactosidase-positive cells, partly explaining the proliferation defect. Gain- and loss-of-function experiments were performed to assess the role of IFN-I on the proliferative capacity of MuSCs. High concentrations of IFN-I decreased the proliferation of healthy MuSCs. Similarly, conditioned medium from DM-MuSCs decreased the proliferation of healthy MuSCs (-15% to -22%), suggesting the delivery of an autocrine effector. Pharmacologic blockade of IFN signaling (using ruxolitinib or anti-IFN receptor antibodies) in DM-MuSCs rescued their proliferation up to the control values. DISCUSSION: These results show that autocrine IFN-I signaling prevents MuSC expansion, leading to muscle repair deficit. This process may explain the persistent muscle weakness observed in patients with severe dermatomyositis.


Asunto(s)
Dermatomiositis , Interferón Tipo I , Adulto , Proliferación Celular , Dermatomiositis/patología , Humanos , Debilidad Muscular/patología , Músculo Esquelético/patología , Transducción de Señal
14.
Trials ; 23(1): 145, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164816

RESUMEN

BACKGROUND: Carotid atherosclerotic plaques remain silent until their rupture, which may lead to detrimental ischemic events such as strokes. This is due, in part, to intraplaque hemorrhages (IPH) and the resulting inflammatory processes, which may promote carotid plaque vulnerability. Currently, the benefits of carotid endarterectomy remain unclear for asymptomatic patients. Interestingly, the completion of physical activity (PA) may have beneficial effects; however, the paucity of current data warrants robust longitudinal interventions. We therefore aim to study the effects of a 6-month longitudinal personalized home-based PA program on IPH, biological, and inflammatory markers in asymptomatic stroke patients. METHODS: Eighty patients (≥ 18 years old) will be recruited for the Physical Activity and Carotid Atherosclerotic Plaque Hemorrhage (PACAPh) clinical trial from the Hospices Civils de Lyon. Patients will be eligible if they present with carotid stenosis ≥ 50% and are asymptomatic from any ischemic events for at least 6 months. Recruited patients will be randomized into either a PA or a control group, and assessed at baseline and after 6 months. At both time points, all patients will be assessed using magnetic resonance imaging to assess IPH, blood sampling to measure inflammatory markers and monocytic phenotyping, PA and sedentary behavior questionnaires, 6-min walking test, and maximal isometric quadricep contraction test. The randomized PA intervention will consist of reaching a daily walking step goal individually tailored to each patient. Steps will be collected using a wirelessly connected wristband. The number of steps completed by individuals in the PA group will be re-evaluated bimonthly to encourage walking habits. DISCUSSION: The PACAPh study is the first of its kind representing a feasible, easily accessible therapeutic strategy for asymptomatic stroke patients. We hypothesize that the personalized home-based PA program will reduce IPH and modulate inflammatory and biological parameters in patients presenting with carotid plaques. If the results of the PACAPh study prove to be beneficial on such health parameters, the implementation of such kind of intervention in the daily treatment of these patients would be an advantageous and cost-effective practice to adopt globally. TRIAL REGISTRATION: This study has been approved by the National Ethics Committee (IDRCB:2019-A01543-54/SI:19.06.21.40640). ClinicalTrials.gov NCT04053166.


Asunto(s)
Estenosis Carotídea , Endarterectomía Carotidea , Placa Aterosclerótica , Accidente Cerebrovascular , Adolescente , Adulto , Arterias Carótidas , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/cirugía , Ejercicio Físico , Humanos , Imagen por Resonancia Magnética , Ensayos Clínicos Controlados Aleatorios como Asunto , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/etiología
15.
Scand J Med Sci Sports ; 32(4): 720-727, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34982477

RESUMEN

Sex differences in muscle fiber-type composition have been documented in several muscle groups while the hamstring muscle fiber-type composition has been poorly characterized. This study aimed to compare the semitendinosus muscle composition between men and women. Biopsy samples were obtained from the semitendinosus muscle of twelve men and twelve women during an anterior cruciate ligament reconstruction. SDH and ATPase activities as well as the size and the proportion of muscle fibers expressing myosin heavy chain (MyHC) isoforms were used to compare muscle composition between men and women. The proportion of SDH-positive muscle fibers was significantly lower (37.4 ± 11.2% vs. 49.3 ± 10.6%, p < 0.05), and the percentage of fast muscle fibers (i.e., based on ATPase activity) was significantly higher (65.8 ± 10.1% vs. 54.8 ± 8.3%, p < 0.05) in men versus women. Likewise, men muscles exhibited a lower percentage of the area that was occupied by MyHC-I labeling (35.6 ± 10.1% vs. 48.7 ± 8.9%; p < 0.05) and a higher percentage of the area that was occupied by MyHC-IIA (38.3 ± 6.7% vs. 32.5 ± 6.5%; p < 0.05) and MyHC-IIX labeling (26.1 ± 9.6% vs. 18.8 ± 8.5%; p = 0.06) as compared with women muscles. The cross-sectional area of MyHC-I, MyHC-IIA, and MyHC-IIX muscle fibers was 31%, 43%, and 50% larger in men as compared with women, respectively. We identified sex differences in semitendinosus muscle composition as illustrated by a faster phenotype and larger muscle size in men as compared with women. This sexual dimorphism might have functional consequences.


Asunto(s)
Músculos Isquiosurales , Animales , Femenino , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético , Cadenas Pesadas de Miosina/genética , Isoformas de Proteínas , Caracteres Sexuales
16.
Mol Metab ; 57: 101424, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954109

RESUMEN

OBJECTIVES: Glucocorticoids (GCs) are one of the most widely prescribed anti-inflammatory drugs. By acting through their cognate receptor, the glucocorticoid receptor (GR), GCs downregulate the expression of pro-inflammatory genes and upregulate the expression of anti-inflammatory genes. Metabolic pathways have recently been identified as key parts of both the inflammatory activation and anti-inflammatory polarization of macrophages, immune cells responsible for acute inflammation and tissue repair. It is currently unknown whether GCs control macrophage metabolism, and if so, to what extent metabolic regulation by GCs confers anti-inflammatory activity. METHODS: Using transcriptomic and metabolomic profiling of macrophages, we identified GC-controlled pathways involved in metabolism, especially in mitochondrial function. RESULTS: Metabolic analyses revealed that GCs repress glycolysis in inflammatory myeloid cells and promote tricarboxylic acid (TCA) cycle flux, promoting succinate metabolism and preventing intracellular accumulation of succinate. Inhibition of ATP synthase attenuated GC-induced transcriptional changes, likely through stalling of TCA cycle anaplerosis. We further identified a glycolytic regulatory transcription factor, HIF1α, as regulated by GCs, and as a key regulator of GC responsiveness during inflammatory challenge. CONCLUSIONS: Our findings link metabolism to gene regulation by GCs in macrophages.


Asunto(s)
Ciclo del Ácido Cítrico , Glucocorticoides , Glucocorticoides/farmacología , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
17.
Cells ; 10(12)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34943775

RESUMEN

Efferocytosis, i.e., engulfment of dead cells by macrophages, is a crucial step during tissue repair after an injury. Efferocytosis delineates the transition from the pro-inflammatory phase of the inflammatory response to the recovery phase that ensures tissue reconstruction. We present here the role of efferocytosis during skeletal muscle regeneration, which is a paradigm of sterile tissue injury followed by a complete regeneration. We present the molecular mechanisms that have been described to control this process, and particularly the metabolic control of efferocytosis during skeletal muscle regeneration.


Asunto(s)
Inflamación/genética , Músculo Esquelético/metabolismo , Fagocitosis/genética , Regeneración/genética , Apoptosis/genética , Humanos , Inflamación/patología , Macrófagos/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Cicatrización de Heridas/genética
18.
Exp Cell Res ; 409(1): 112905, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34736921

RESUMEN

Adult skeletal muscle regenerates completely after a damage, thanks to the satellite cells, or muscle stem cells (MuSCs), that implement the adult myogenic program. This program is sustained by both robust intrinsic mechanisms and extrinsic cues coming from the close neighborhood of MuSCs during muscle regeneration. Among the various cell types present in the regenerating muscle, immune cells, and particularly macrophages, exert numerous functions and provide sequential transient niches to support the myogenic program. The adequate orchestration of the delivery of these cues ensures efficient muscle regeneration and full functional recovery. The situation is very different in muscular dystrophies where asynchronous and permanent microinjuries occur, triggering contradictory regenerating cues at the same time in a specific area, that lead to chronic inflammation and fibrogenesis. Here we review the beneficial effects that leukocytes, and particularly macrophages, exert on their neighboring cells during skeletal muscle regeneration after an acute injury. Then, the more complicated (and less beneficial) roles of leukocytes during muscular dystrophies are presented. Finally, we discuss how the inflammatory compartment may be a target to improve muscle regeneration in both acute muscle injury and muscle diseases.


Asunto(s)
Inflamación/patología , Animales , Diferenciación Celular/fisiología , Humanos , Macrófagos/patología , Desarrollo de Músculos/fisiología , Músculo Esquelético/patología , Regeneración/fisiología , Cicatrización de Heridas/fisiología
19.
Cell Metab ; 33(11): 2095-2096, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731650

RESUMEN

Skeletal muscle fibrosis is a complication of diabetes and insulin resistance. In this issue of Cell Metabolism, Farup et al. (2021) characterized fibro-adipogenic precursors (FAPs) in human skeletal muscle and showed that a CD34+CD90+ FAP subset is involved in diabetes-induced muscle fibrosis through PDGFRα signaling and activation of glycolysis.


Asunto(s)
Adipogénesis , Diabetes Mellitus , Diferenciación Celular , Diabetes Mellitus/patología , Fibrosis , Humanos , Músculo Esquelético/patología
20.
Sci Signal ; 14(707): eabf3838, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34726954

RESUMEN

Damaged skeletal muscle can regenerate because of the coordinated action of immune cells with muscle stem cells, called satellite cells. Proinflammatory macrophages infiltrate skeletal muscle soon after injury to sustain the proliferation of satellite cells. These macrophages later acquire the anti-inflammatory phenotype and promote the differentiation and fusion of satellite cells. Here, we showed that MCUb, the dominant-negative subunit of the mitochondrial calcium uniporter (MCU) complex, promotes muscle regeneration by controlling macrophage responses. Macrophages lacking MCUb lost the ability to efficiently acquire the anti-inflammatory profile, and mice with MCUb-deficient macrophages showed delayed regeneration through exhaustion of the satellite cell pool. MCUb ablation altered macrophage metabolism by promoting glycolysis and the accumulation of TCA cycle intermediates, which was accompanied by the stabilization of HIF-1α, the master transcriptional regulator of the macrophage proinflammatory program. Together, these data demonstrate that MCUb abundance is tightly controlled in macrophages to enable satellite cell functional differentiation and recovery of tissue homeostasis after damage.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA