Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; : 174333, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945231

RESUMEN

The rhizosphere microorganisms of blueberry plants have long coexisted with their hosts under distinctively acidic soil conditions, exerting a profound influence on host performance through mutualistic symbiotic interactions. Meanwhile, plants can regulate rhizosphere microorganisms by exerting host effects to meet the functional requirements of plant growth and development. However, it remains unknown how the developmental stages of blueberry plants affect the structure, function, and interactions of the rhizosphere microbial communities. Here, we examined bacterial communities and root metabolites at three developmental stages (flower and leaf bud development stage, fruit growth and development stage, and fruit maturation stage) of blueberry plants. The results revealed that the Shannon and Chao 1 indices as well as community composition varied significantly across all three developmental stages. The relative abundance of Actinobacteria significantly increased by 10 % (p < 0.05) from stage 1 to stage 2, whereas that of Proteobacteria decreased significantly. The co-occurrence network analysis revealed a relatively complex network with 1179 edges and 365 nodes in the stage 2. Niche breadth was highest at stage 2, while niche overlap tended to increase as the plant developed. Furthermore, the untargeted metabolome analysis revealed that the number of differential metabolites of vitamins, nucleic acids, steroids, and lipids increased between stage 1 to stage2 and stage 2 to stage 3, while those for differential metabolites of carbohydrates and peptides decreased. Significant changes in expression levels of levan, L-glutamic acid, indoleacrylic acid, oleoside 11-methyl ester, threo-syringoylglycerol, gingerglycolipid B, and bovinic acid were highly correlated with the bacterial community structure. Collectively, our study reveals that significant alterations in dominant bacterial taxa are strongly correlated with the dynamics of root metabolites. These findings lay the groundwork for developing prebiotic products to enhance the beneficial effects of root microorganisms and boosting blueberry productivity via a sustainable approach.

2.
Sci Total Environ ; 912: 168862, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38016555

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) are the most persistent and toxic organic contaminants often found co-contaminated in anthropogenic and petrochemical industrial sites. Therefore, an experiment was performed for the safe biodegradation of benzene and benzo[a]pyrene (BaP) through thermally-enhanced biodegradation, and to explore the influence of elevated thermal treatments on microbial diversity and composition. The results revealed that elevated thermal treatments (15 to 45 °C) significantly enhanced the diversity of both bacteria and fungi. The composition analysis revealed that short-term and long-term elevated temperature conditions can directly enhance the specificity of microorganisms that play a crucial role in the biodegradation of benzene and BaP co-contaminated soil. Moreover, the indirect role of elevated temperature conditions on microbial compositions was through the fluctuations of soil properties, especially soil pH, moisture, TOC, potassium, phosphorous, total Fe, Fe(II), and Fe(III). In addition, the correlation analyses revealed that thermal exposure enhances the synergistic association (fungal-fungal, fungal-bacterial, bacterial-bacterial) of microbes to degrade the toxic contaminants and to cope with harsh environmental conditions. These results concluded that the biodegradation of benzene and BaP co-contamination was efficiently enhanced under the thermally-enhanced biodegradation approach and the elevation of temperature can affect the microbial compositions directly via microbial specificity or indirectly by influencing the soil properties.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Benceno/análisis , Benzo(a)pireno/metabolismo , Suelo , Compuestos Férricos , Contaminantes del Suelo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Biodegradación Ambiental , Microbiología del Suelo , Bacterias/metabolismo
3.
J Agric Food Chem ; 72(1): 904-915, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112527

RESUMEN

Exogenous substances (ESs) can regulate plant growth and respond to environmental stress, but the effects of different ESs on blueberry fruit quality under soil cadmium (Cd) toxicity and related metabolic mechanisms are still unclear. In this study, four ES treatments [salicylic acid (SA), spermidine (Spd), 2,4-epibrassinolide (EBR), and melatonin (MT)] significantly increased blueberry fruit size, single-fruit weight, sweetness, and anthocyanin content under soil Cd toxicity and effectively reduced fruit Cd content to safe consumption levels by promoting mineral uptake (Ca, Mg, Mn, Cu and Zn). Furthermore, a total of 445, 360, 429, and 554 differentially abundant metabolites (DAMs) (LC-MS) and 63, 48, 79, and 73 DAMs (GC-MS) were identified from four comparison groups (SA/CK, Spd/CK, EBR/CK and MT/CK), respectively. The analyses revealed that ESs improved blueberry fruit quality and tolerance to Cd toxicity mainly by regulating the changes in metabolites related to ABC transporters, the TCA cycle, flavonoid biosynthesis, and phenylpropanoid biosynthesis.


Asunto(s)
Arándanos Azules (Planta) , Melatonina , Cadmio/toxicidad , Cadmio/metabolismo , Cromatografía Líquida con Espectrometría de Masas , Cromatografía de Gases y Espectrometría de Masas , Arándanos Azules (Planta)/metabolismo , Frutas/metabolismo , Suelo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Melatonina/metabolismo
4.
Microbiol Spectr ; 11(3): e0533322, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37222589

RESUMEN

Plant root-associated microbiomes play critical roles in promoting plant health, productivity, and tolerance to biotic/abiotic stresses. Blueberry (Vaccinium spp.) is adapted to acidic soils, while the interactions of the root-associated microbiomes in this specific habitat under various root microenvironments remain elusive. Here, we investigated the diversity and community composition of bacterial and fungal communities in various blueberry root niches (bulk soil, rhizosphere soil, and root endosphere). The results showed that blueberry root niches significantly affected root-associated microbiome diversity and community composition compared to those of the three host cultivars. Deterministic processes gradually increased along the soil-rhizosphere-root continuum in both bacterial and fungal communities. The co-occurrence network topological features showed that both bacterial and fungal community complexity and intensive interactions decreased along the soil-rhizosphere-root continuum. Different compartment niches clearly influenced bacterial-fungal interkingdom interactions, which were significantly higher in the rhizosphere, and positive interactions gradually dominated the co-occurrence networks from the bulk soil to the endosphere. The functional predictions showed that rhizosphere bacterial and fungal communities may have higher cellulolysis and saprotrophy capacities, respectively. Collectively, the root niches not only affected microbial diversity and community composition but also enhanced the positive interkingdom interactions between bacterial and fungal communities along the soil-rhizosphere-root continuum. This provides an essential basis for manipulating synthetic microbial communities for sustainable agriculture. IMPORTANCE The blueberry root-associated microbiome plays an essential role in its adaptation to acidic soils and in limiting the uptake of soil nutrients by its poor root system. Studies on the interactions of the root-associated microbiome in the various root niches may deepen our understanding of the beneficial effects in this particular habitat. Our study extended the research on the diversity and composition of microbial communities in different blueberry root compartment niches. Root niches dominated the root-associated microbiome compared to that of the host cultivar, and deterministic processes increased from the bulk soil to the endosphere. In addition, bacterial-fungal interkingdom interactions were significantly higher in the rhizosphere, and those positive interactions progressively dominated the co-occurrence network along the soil-rhizosphere-root continuum. Collectively, root niches dominantly affected the root-associated microbiome and the positive interkingdom interactions increased, potentially providing benefits for the blueberry.


Asunto(s)
Arándanos Azules (Planta) , Microbiota , Rizosfera , Suelo , Microbiología del Suelo , Bacterias/genética
5.
Plants (Basel) ; 12(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050106

RESUMEN

Blackberries are an emerging third-generation fruit that are popular in Europe, and specific nitrogen (N) supply is an important factor affecting their growth and development. To study the optimal N fertilizer for blackberry seedlings, no N (CK), nitrate (NO3-)-N, ammonium (NH4+)-N and urea were applied to one-year-old 'Ningzhi 4' blackberry plants at a key growth period (from May to August) to explore the effects of different N forms on the physiological characteristics. Correlation and principal component analysis were used to determine the relationships between various indexes. Ammonium (NH4+) or urea-fed plants had a better growth state, showed a greater plant height, biomass, SPAD values and enhanced antioxidant enzyme activities and photosynthesis. In addition, NH4+ was beneficial to the accumulation of sugars and amino acids in leaves and roots, and promoted the transport of auxin and cytokinin to leaves. NO3- significantly inhibited root growth and increased the contents of active oxygen, malondialdehyde and antioxidants in roots. Correlation and principal component analysis showed that growth and dry matter accumulation were closely related to the antioxidant system, photosynthetic characteristics, amino acids and hormone content. Our study provides a new idea for N regulation mechanism of blackberry and proposes a scientific fertilization strategy.

6.
Foods ; 12(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37107406

RESUMEN

Microbial contamination is one of the main reasons for the quality deterioration of postharvest blueberries during storage. In this study, we investigated the surface microbiota of blueberry fruits stored at different temperatures via high-throughput sequencing of the 16S and ITS rRNA genes. The results indicated that the α-diversity of the microbial communities in samples stored at 4 °C was much higher than that in samples stored at 25 °C. The composition of the bacterial and fungal communities on the surface of the blueberry fruits varied at different storage temperatures. Ascomycota, Basidiomycota, Anthophyta, Chlorophyta, Proteobacteria, and Cyanobacteria were the most abundant phyla in the bacterial community. Furthermore, five preservation quality indices were measured, and the influence on the α-diversity of the bacterial community was found to be significantly weaker than that of the fungal community. Based on the prediction of the bacterial flora function, the change in blueberry quality during storage was closely related to its surface microbial effect. This study provides a theoretical basis for an understanding of the microbiota on the surface of blueberry fruits to cause fruit spoilage, and the development of a targeted inhibition technology to preserve blueberry fruits under different storage and transportation environments.

7.
Environ Pollut ; 318: 120831, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509345

RESUMEN

Despite the co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) in the field, to date, knowledge on the bioremediation of benzene and benzo[a]pyrene (BaP) mixed contaminants is limited. In this study, the mechanisms underlying the biodegradation of benzene and BaP under individual and co-contaminated conditions followed by the enhanced biodegradation using methanol, ethanol, and vegetable oil as biostimulants were investigated. The results demonstrated that the benzene biodegradation was highly reduced under the co-contaminated condition compared to the individual benzene contamination, whereas the BaP biodegradation was slightly enhanced with the co-contamination of benzene. Moreover, biostimulation significantly improved the biodegradation of both contaminants under co-contaminated conditions. A trend of significant reduction in the bioavailable BaP contents was observed in all biostimulant-enhanced groups, implying that the bioavailable BaP was the preferred biodegradable BaP fraction. Furthermore, the enzymatic activity analysis revealed a significant increase in lipase and dehydrogenase (DHA) activities, as well as a reduction in the catalase and polyphenol oxidase, suggesting that the increased hydrolysis of fats and proton transfer, as well as the reduced oxidative stress, contributed to the enhanced benzene and BaP biodegradation in the vegetable oil treatment. In addition, the microbial composition analysis results demonstrated that the enriched functional genera contributed to the increased biodegradation efficiency, and the functional genera in the microbial consortium responded differently to different biostimulants, and competitive growth was observed in the biostimulant-enhanced treatments. In addition, the enrichment of Pseudomonas and Rhodococcus species was noticed during the biostimulation of benzene and BaP co-contamination soil, and was positively correlated with the DHA enzyme activities, indicating that these species encode DHA genes which contributed to the higher biodegradation. In conclusion, multiple lines of evidence were provided to shed light on the mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX co-contamination with native microbial consortiums.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Benceno/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo , Biodegradación Ambiental , Suelo , Consorcios Microbianos , Microbiología del Suelo , Contaminantes del Suelo/análisis
8.
Front Plant Sci ; 13: 962759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212276

RESUMEN

Rhizosphere microbial communities profoundly affect plant health, productivity, and responses to environmental stress. Thus, it is of great significance to comprehensively understand the response of root-associated microbes to planting years and the complex interactions between plants and rhizosphere microbes under long-term cultivation. Therefore, four rabbiteye blueberries (Vaccinium ashei Reade) plantations established in 1988, 2004, 2013, and 2017 were selected to obtain the dynamic changes and assembly mechanisms of rhizosphere microbial communities with the increase in planting age. Rhizosphere bacterial and fungal community composition and diversity were determined using a high-throughput sequencing method. The results showed that the diversity and structure of bacterial and fungal communities in the rhizosphere of blueberries differed significantly among planting ages. A total of 926 operational taxonomic units (OTUs) in the bacterial community and 219 OTUs in the fungal community were identified as the core rhizosphere microbiome of blueberry. Linear discriminant analysis effect size (LEfSe) analysis revealed 36 and 56 distinct bacterial and fungal biomarkers, respectively. Topological features of co-occurrence network analysis showed greater complexity and more intense interactions in bacterial communities than in fungal communities. Soil pH is the main driver for shaping bacterial community structure, while available potassium is the main driver for shaping fungal community structure. In addition, the VPA results showed that edaphic factors and blueberry planting age contributed more to fungal community variations than bacterial community. Notably, ericoid mycorrhizal fungi were observed in cultivated blueberry varieties, with a marked increase in relative abundance with planting age, which may positively contribute to nutrient uptake and coping with environmental stress. Taken together, our study provides a basis for manipulating rhizosphere microbial communities to improve the sustainability of agricultural production during long-term cultivation.

9.
Huan Jing Ke Xue ; 36(12): 4486-93, 2015 Dec.
Artículo en Chino | MEDLINE | ID: mdl-27011984

RESUMEN

In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.


Asunto(s)
Sedimentos Geológicos/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , China , Ecología , Monitoreo del Ambiente , Medición de Riesgo , Suelo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...