Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Orphanet J Rare Dis ; 19(1): 186, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702811

RESUMEN

BACKGROUND: Paroxysmal nocturnal hemoglobinuria (PNH) is a rare blood disorder, leading to various complications and impairments in patients' health-related quality of life (HRQOL). Limited research has been conducted to evaluate the HRQOL of Chinese patients with PNH. Understanding the HRQOL in this specific population is crucial for providing effective healthcare interventions and improving patient' health outcomes. This study aimed to assess HRQOL of Chinese patients with PNH, and identify key determinants. METHODS: A cross-sectional study was conducted during 2022 to recruit patients with PNH in China. The study population was recruited from PNH China, one of the largest public welfare PNH patient mutual aid organization in China. Data were collected via an online questionnaire including the EQ-5D-5L (5L), and social-demographic and clinical characteristics. Descriptive statistics were employed to summarize the characteristics of the participants and their HRQOL. Multiple linear and logistic regression analyses were adopted to explore key factors affecting HRQOL. RESULTS: A total of 329 valid questionnaires were collected. The mean (SD) age of the patients was 35.3 (10.0) years, with 52.3% of them being male. The patients reported more problems in Anxiety/Depression (81.5%) and Pain/Discomfort (69.9%) dimensions compared to the other three 5L dimensions. The mean (SD) of 5L health utility score (HUS) and EQ-VAS score were 0.76 (0.21) and 62.61 (19.20), respectively. According to multiple linear regression, initial symptoms (i.e., Anemia [fatigue, tachycardia, shortness of breath, headache] and back pain) and complication of thrombosis were significant influencing factors affecting 5L HUS. Total personal income of the past year, initial symptom of hemoglobinuria and complication of thrombosis were significantly influencing factors of VAS score. Social-demographic and clinical characteristics, such as gender, income, and thrombosis, were also found to be significantly related to certain 5L health problems as well. CONCLUSION: Our study manifested the HRQOL of PNH patients in China was markedly compromised, especially in two mental-health related dimensions, and revealed several socio-demographic and clinical factors of their HRQOL. These findings could be used as empirical evidence for enhancing the HRQOL of PNH patients in China.


Asunto(s)
Hemoglobinuria Paroxística , Calidad de Vida , Humanos , Masculino , Femenino , China/epidemiología , Adulto , Estudios Transversales , Persona de Mediana Edad , Encuestas y Cuestionarios , Adulto Joven , Adolescente
2.
Nat Commun ; 13(1): 3749, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768470

RESUMEN

Insulin sensitivity progressively declines with age. Currently, the mechanism underlying age-associated insulin resistance remains unknown. Here, we identify membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) as a central regulator of insulin sensitivity during ageing. Ageing promotes MMP14 activation in insulin-sensitive tissues, which cleaves Insulin Receptor to suppress insulin signaling. MT1-MMP inhibition restores Insulin Receptor expression, improving insulin sensitivity in aged mice. The cleavage of Insulin Receptor by MT1-MMP also contributes to obesity-induced insulin resistance and inhibition of MT1-MMP activities normalizes metabolic dysfunctions in diabetic mouse models. Conversely, overexpression of MT1-MMP in the liver reduces the level of Insulin Receptor, impairing hepatic insulin sensitivity in young mice. The soluble Insulin Receptor and circulating MT1-MMP are positively correlated in plasma from aged human subjects and non-human primates. Our findings provide mechanistic insights into regulation of insulin sensitivity during physiological ageing and highlight MT1-MMP as a promising target for therapeutic avenue against diabetes.


Asunto(s)
Resistencia a la Insulina , Metaloproteinasa 14 de la Matriz , Receptor de Insulina , Factores de Edad , Animales , Humanos , Insulina/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Receptor de Insulina/metabolismo , Transducción de Señal
3.
Nat Metab ; 4(2): 203-212, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35177851

RESUMEN

GDNF-family receptor a-like (GFRAL) has been identified as the cognate receptor of growth/differentiation factor 15 (GDF15/MIC-1), considered a key signaling axis in energy homeostasis and body weight regulation. Currently, little is known about the physiological regulation of the GDF15-GFRAL signaling pathway. Here we show that membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) is an endogenous negative regulator of GFRAL in the context of obesity. Overnutrition-induced obesity increased MT1-MMP activation, which proteolytically inactivated GFRAL to suppress GDF15-GFRAL signaling, thus modulating the anorectic effects of the GDF15-GFRAL axis in vivo. Genetic ablation of MT1-MMP specifically in GFRAL+ neurons restored GFRAL expression, resulting in reduced weight gain, along with decreased food intake in obese mice. Conversely, depletion of GFRAL abolished the anti-obesity effects of MT1-MMP inhibition. MT1-MMP inhibition also potentiated GDF15 activity specifically in obese phenotypes. Our findings identify a negative regulator of GFRAL for the control of non-homeostatic body weight regulation, provide mechanistic insights into the regulation of GDF15 sensitivity, highlight negative regulators of the GDF15-GFRAL pathway as a therapeutic avenue against obesity and identify MT1-MMP as a promising target.


Asunto(s)
Metaloproteinasa 14 de la Matriz , Obesidad , Animales , Anorexia/metabolismo , Peso Corporal , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Metaloproteinasa 14 de la Matriz/uso terapéutico , Ratones , Obesidad/metabolismo
4.
Cell Cycle ; 18(16): 1824-1829, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31272268

RESUMEN

Environmental stressors in early childhood can have a detrimental impact later in life, manifesting in functional gastrointestinal disorders including irritable bowel syndrome (IBS). The phenomenon is also observed in rodents, where neonatal-maternal separation, a model of early life stress, induces phenotypes similar to IBS; however, the underlying mechanisms remain unelucidated. Our recent study provided a mechanism for the pathogenesis in the gut, demonstrating that increased visceral hyperalgesia resulted from the expansion of the intestinal stem cell compartment leading to increased differentiation and proliferation of serotonin (5-hydroxytryptamine/5-HT)-producing enterochromaffin cells. Moreover, it identified nerve growth factor (NGF) as a key mediator of the pathogenesis; surprisingly, it exerts its effect via cross talk with Wnt/ß-catenin signaling. This article addresses the roles of NGF in driving IBS and its potential clinical implications, outstanding questions in how psychological stimuli are transduced into physical phenotypes, as well as future directions of our findings. Abbreviations: 5-HT: 5-hydroxytryptamine/serotonin; BDNF: brain-derived neurotrophic factor; CRF: corticotrophin-releasing factor; EC: enterochromaffin; ENS: enteric nervous system; GI: gastrointestinal; GPCR: G-protein-coupled receptor; IBS (-D): irritable bowel syndrome (diarrhea predominant); LRP5/6: low-density lipoprotein receptor-related protein 5/6; MAPK: mitogen-activated protein kinase; NGF: nerve growth factor; NMS: neonatal-maternal separation; PI3K: phosphoinositode3-kinase; PLCγ: phospholipase c, gamma subtype; TrkA: tropomyosin receptor kinase A.


Asunto(s)
Adultos Sobrevivientes de Eventos Adversos Infantiles , Motilidad Gastrointestinal , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/patología , Factor de Crecimiento Nervioso/metabolismo , Estrés Psicológico/complicaciones , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Células Enterocromafines/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Privación Materna , Ratones , Receptor trkA/metabolismo , Serotonina/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
5.
Nat Commun ; 10(1): 1745, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988299

RESUMEN

Early childhood is a critical period for development, and early life stress may increase the risk of gastrointestinal diseases including irritable bowel syndrome (IBS). In rodents, neonatal maternal separation (NMS) induces bowel dysfunctions that resemble IBS. However, the underlying mechanisms remain unclear. Here we show that NMS induces expansion of intestinal stem cells (ISCs) and their differentiation toward secretory lineages including enterochromaffin (EC) and Paneth cells, leading to EC hyperplasia, increased serotonin production, and visceral hyperalgesia. This is reversed by inhibition of nerve growth factor (NGF)-mediated tropomyosin receptor kinase A (TrkA) signalling, and treatment with NGF recapitulates the intestinal phenotype of NMS mice in vivo and in mouse intestinal organoids in vitro. Mechanistically, NGF transactivates Wnt/ß-catenin signalling. NGF and serotonin are positively correlated in the sera of diarrhea-predominant IBS patients. Together, our findings provide mechanistic insights into early life stress-induced intestinal changes that may translate into treatments for gastrointestinal diseases.


Asunto(s)
Enfermedades Gastrointestinales/etiología , Estrés Fisiológico , Animales , Células Enterocromafines/patología , Humanos , Hiperplasia/patología , Privación Materna , Ratones , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/fisiología , Receptor trkA/genética , Receptor trkA/metabolismo , Receptor trkA/fisiología , Transducción de Señal , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA