RESUMEN
Background: Allergic rhinitis (AR) is an allergic reaction dominated by the Th2 immune response in the nasal mucosa. The bacterial infection process affects the balance between Th1 and Th2 immune responses, and the level of exposure to environmental flora is closely related to the development of AR. Hydrogen (H2) is a medical molecule with anti-inflammatory and antioxidant properties. This study aimed to explore the possible mechanism of action of H2 on AR through its ability to regulate the balance of nasal flora. Methods: Serum eosinophil count (EOS), immunoglobulin E (IgE) concentration, visual analog scale (VAS), total nasal symptom score (TNSS), and rhinoconjunctivitis quality of life questionnaire (RQLQ) were observed before and after hydrogen inhalation in AR patients. Skin prick test (SPT) was used to determine allergen sensitisation. Community composition and relative abundance of nasal flora were examined before and after hydrogen inhalation and in normal subjects using 16S rRNA gene sequencing. Results: There were no adverse reactions during and after hydrogen inhalation in AR patients, with a favorable safety profile and significant improvements in VAS, TNSS, EOS, and IgE (P < 0.05). Cavity flora 16S rRNA gene sequencing showed higher abundance of Ruminococcus and Erysipelotrichaceae flora in the nasal cavity of AR patients than in normal subjects, and their abundance could be down-regulated after H2 inhalation. H2 significantly increased the abundance of Blautia_faecis and negatively correlated with VAS, TNSS, EOS, and IgE. Conclusions: H2 may improve symptoms in AR patients by modulating the distribution of nasal flora. Trials with larger sample sizes are required to further test this hypothesis. Trial registration: This trial was registered in the China Clinical Trial Registry (Registration No. ChiCTR2200062253).
RESUMEN
Introduction: Although recent studies have shown that the human microbiome is involved in the pathogenesis of allergic diseases, the impact of microbiota on allergic rhinitis (AR) and non-allergic rhinitis (nAR) has not been elucidated. The aim of this study was to investigate the differences in the composition of the nasal flora in patients with AR and nAR and their role in the pathogenesis. Method: From February to September 2022, 35 AR patients and 35 nAR patients admitted to Harbin Medical University's Second Affiliated Hospital, as well as 20 healthy subjects who underwent physical examination during the same period, were subjected to 16SrDNA and metagenomic sequencing of nasal flora. Results: The microbiota composition of the three groups of study subjects differs significantly. The relative abundance of Vibrio vulnificus and Acinetobacter baumanni in the nasal cavity of AR patients was significantly higher when compared to nAR patients, while the relative abundance of Lactobacillus murinus, Lactobacillus iners, Proteobacteria, Pseudomonadales, and Escherichia coli was lower. In addition, Lactobacillus murinus and Lacttobacillus kunkeei were also negatively correlated with IgE, while Lacttobacillus kunkeei was positively correlated with age. The relative distribution of Faecalibacterium was higher in moderate than in severe AR patients. According to KEGG functional enrichment annotation, ICMT(protein-S-isoprenylcysteine O-methyltransferase,ICMT) is an AR microbiota-specific enzyme that plays a role, while glycan biosynthesis and metabolism are more active in AR microbiota. For AR, the model containing Parabacteroides goldstemii, Sutterella-SP-6FBBBBH3, Pseudoalteromonas luteoviolacea, Lachnospiraceae bacterium-615, and Bacteroides coprocola had the highest the area under the curve (AUC), which was 0.9733(95%CI:0.926-1.000) in the constructed random forest prediction model. The largest AUC for nAR is 0.984(95%CI:0.949-1.000) for the model containing Pseudomonas-SP-LTJR-52, Lachnospiraceae bacterium-615, Prevotella corporis, Anaerococcus vaginalis, and Roseburia inulinivorans. Conclusion: In conclusion, patients with AR and nAR had significantly different microbiota profiles compared to healthy controls. The results suggest that the nasal microbiota may play a key role in the pathogenesis and symptoms of AR and nAR, providing us with new ideas for the treatment of AR and nAR.
Asunto(s)
Bacterias , Microbiota , Cavidad Nasal , Rinitis Alérgica , Rinitis , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Rinitis Alérgica/microbiología , Rinitis/microbiología , Cavidad Nasal/microbiología , Metagenoma , Biodiversidad , ARN Ribosómico 16S/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificaciónRESUMEN
Exosomes are a new way of the communication between the tumor cell and macrophage in the micro-environment. The macrophage can be induced to different phenotypes according to the different tumors. In the present study, long-chain noncoding RNA HOTAIR (lncRNA HOTAIR) was highly expressed in LSCC and exosomes. The pathway of exosomal lncRNA HOTAIR inducing macrophage to M2 polarization in the LSCC was investigated. The carcinoma tissues and adjacent tissues were collected from 104 LSCC cases, and the positive relationship between CD163-/CD206-M2 macrophage infiltration and clinical phase, lymph node spreading and pathological phase in LSCC was observed. To examine the role of exosomal lncRNA HOTAIR, macrophages were co-cultured with LSCC-exosomes of high lncRNA HOTAIR expression or transferred with HOTAIR mimics. It was suggested that exosomal lncRNA HOTAIR can induce macrophages to M2 polarization by PI3K/p-AKT/AKT signaling pathway. Furthermore, exo-treated M2 macrophages facilitate the migration, proliferation, and EMT of LSCC.