RESUMEN
Mammalian hair cells (HCs) are arranged spirally along the cochlear axis and correspond to different frequency ranges. Serving as primary sound detectors, HCs spatially segregate component frequencies into a topographical map. HCs display significant diversity in anatomical and physiological characteristics, yet little is known about the organization of the cochleotopic map of HCs or the molecules involved in this process. Using single-cell RNA sequencing, we determined the distinct molecular profiles of inner hair cells and outer hair cells, and we identified numerous position-dependent genes that were expressed as gradients. Newly identified genes such as Ptn, Rxra, and Nfe2l2 were found to be associated with tonotopy. We employed the SCENIC algorithm to predict the transcription factors that potentially shape these tonotopic gradients. Furthermore, we confirmed that Nfe2l2, a tonotopy-related transcription factor, is critical in mice for sensing low-to-medium sound frequencies in vivo. the analysis of cell-cell communication revealed potential receptor-ligand networks linking inner hair cells to spiral ganglion neurons, including pathways such as BDNF-Ntrk and PTN-Scd4, which likely play essential roles in tonotopic maintenance. Overall, these findings suggest that molecular gradients serve as the organizing principle for maintaining the selection of sound frequencies by HCs.
Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Células Ciliadas Auditivas Internas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Cóclea/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/fisiología , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/citología , Comunicación Celular , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiologíaRESUMEN
Organoids have certain cellular composition and physiological features in common with real organs, making them promising models of organ formation, function, and diseases. However, Matrigel, the commonly used animal-derived matrices in which they are developed, has limitations in mechanical adjustability and providing complex physicochemical signals. Here, the incorporation of Ti3 C2 Tx MXene nanomaterial into Matrigel regulates the properties of Matrigel and exhibits satisfactory biocompatibility. The Ti3 C2 Tx MXene Matrigel composites (MXene-Matrigel) regulate the development of Cochlear Organoids (Cochlea-Orgs), particularly in promoting the formation and maturation of organoid hair cells. Additionally, regenerated hair cells in MXene-Matrigel are functional and exhibit better electrophysiological properties compared to hair cells in Matrigel. MXene-Matrigel potentiates the amycin (mTOR) signaling pathway to promote hair cell differentiation, and mTOR signaling inhibition restrains hair cell differentiation. Moreover, MXene-Matrigel facilitates innervation establishment between regenerated hair cells and spiral ganglion neurons (SGNs) growing from the Cochlea modiolus in a co-culture system, as well as promotes synapse formation efficiency. The approach overcomes some limitations of the Matrigel-dependent culture system and greatly accelerates the application of nanomaterials in organoid development and research on therapies for hearing loss.
Asunto(s)
Hidrogeles , Organoides , Animales , Titanio , Cóclea/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Free radical hypothesis which is one of the most acknowledged aging theories was developed into oxidative stress hypothesis. Protein carbonylation is by far one of the most widely used markers of protein oxidation. We studied the role of age and gender in protein carbonyl content of saliva and plasma among 273 Chinese healthy subjects (137 females and 136 males aged between 20 and 79) and discussed the correlation between protein carbonyl content of saliva and plasma. Protein carbonyl content of saliva and plasma were, respectively, 2.391 ± 0.639 and 0.838 ± 0.274 nmol/mg. Variations of saliva and plasma different age groups all reached significant differences in both male and female (all p < 0.05) while both saliva and plasma protein carbonyls were found to be significantly correlated with age (r = 0.6582 and r = 0.5176, all p < 0.001). Gender was discovered to be unrelated to saliva and plasma protein carbonyl levels (all p > 0.05). Saliva and plasma protein carbonyls were positively related (r = 0.4405, p < 0.001). Surprisingly, saliva and plasma protein carbonyls/ferric reducing ability of plasma (FRAP) ratios were proved to be significantly correlated with age (r = 0.7796 and r = 0.6938, all p < 0.001) while saliva protein carbonyls/FRAP ratio and plasma protein carbonyls/FRAP ratio were also correlated (r = 0.5573, p < 0.001). We concluded that saliva protein carbonyls seem to be an alternative biomarker of aging while the mechanisms of protein carbonylation and oxidative stress and the relationship between saliva protein carbonyls and diseases need to be further investigated.