Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Intensive Care Med ; 50(6): 849-860, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748265

RESUMEN

Hematological malignancies may require rapid-onset treatment because of their short doubling time, notably observed in acute leukemias and specific high-grade lymphomas. Furthermore, in targeted onco-hematological scenarios, chemotherapy is deemed necessary as an emergency measure when facing short-term, life-threatening complications associated with highly chemosensitive hematological malignancies. The risks inherent in the disease itself, or in the initiation of treatment, may then require admission to the intensive care unit (ICU) to optimize monitoring and initial management protocols. Hyperleukocytosis and leukostasis in acute leukemias, tumor lysis syndrome, and disseminated intravascular coagulation are the most frequent onco-hematological complications requiring the implementation of emergency chemotherapy in the ICU. Chemotherapy must also be started urgently in secondary hemophagocytic lymphohistiocytosis. Tumor-induced microangiopathic hemolytic anemia and plasma hyperviscosity due to malignant monoclonal gammopathy represent infrequent yet substantial indications for emergency chemotherapy. In all cases, the administration of emergency chemotherapy in the ICU requires close collaboration between intensivists and hematology specialists. In this review, we provide valuable insights that aid in the identification and treatment of patients requiring emergency chemotherapy in the ICU, offering diagnostic tools and guidance for their overall initial management.


Asunto(s)
Neoplasias Hematológicas , Unidades de Cuidados Intensivos , Humanos , Unidades de Cuidados Intensivos/organización & administración , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/complicaciones , Síndrome de Lisis Tumoral/etiología , Síndrome de Lisis Tumoral/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Coagulación Intravascular Diseminada/tratamiento farmacológico , Coagulación Intravascular Diseminada/etiología , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Linfohistiocitosis Hemofagocítica/complicaciones
3.
Crit Care ; 28(1): 170, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769582

RESUMEN

AIMS AND SCOPE: The aim of this panel was to develop consensus recommendations on targeted temperature control (TTC) in patients with severe traumatic brain injury (TBI) and in patients with moderate TBI who deteriorate and require admission to the intensive care unit for intracranial pressure (ICP) management. METHODS: A group of 18 international neuro-intensive care experts in the acute management of TBI participated in a modified Delphi process. An online anonymised survey based on a systematic literature review was completed ahead of the meeting, before the group convened to explore the level of consensus on TTC following TBI. Outputs from the meeting were combined into a further anonymous online survey round to finalise recommendations. Thresholds of ≥ 16 out of 18 panel members in agreement (≥ 88%) for strong consensus and ≥ 14 out of 18 (≥ 78%) for moderate consensus were prospectively set for all statements. RESULTS: Strong consensus was reached on TTC being essential for high-quality TBI care. It was recommended that temperature should be monitored continuously, and that fever should be promptly identified and managed in patients perceived to be at risk of secondary brain injury. Controlled normothermia (36.0-37.5 °C) was strongly recommended as a therapeutic option to be considered in tier 1 and 2 of the Seattle International Severe Traumatic Brain Injury Consensus Conference ICP management protocol. Temperature control targets should be individualised based on the perceived risk of secondary brain injury and fever aetiology. CONCLUSIONS: Based on a modified Delphi expert consensus process, this report aims to inform on best practices for TTC delivery for patients following TBI, and to highlight areas of need for further research to improve clinical guidelines in this setting.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Consenso , Técnica Delphi , Hipotermia Inducida , Humanos , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Hipotermia Inducida/métodos , Hipotermia Inducida/normas , Unidades de Cuidados Intensivos/organización & administración , Presión Intracraneal/fisiología , Encuestas y Cuestionarios
4.
Ann Intensive Care ; 14(1): 66, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662091

RESUMEN

BACKGROUND: Multiple randomized controlled studies have compared numerous antibiotic regimens, including new, recently commercialized antibiotics in the treatment of nosocomial pneumonia (NP). The objective of this Bayesian network meta-analysis (NMA) was to compare the efficacy and the safety of different antibiotic treatments for NP. METHODS: We conducted a systematic search of PubMed, Medline, Web of Science, EMBASE and the Cochrane Library databases from 2000 through 2021. The study selection included studies comparing antibiotics targeting Gram-negative bacilli in the setting of NP. The primary endpoint was 28 day mortality. Secondary outcomes were clinical cure, microbiological cure and adverse events. RESULTS: Sixteen studies encompassing 4993 patients were included in this analysis comparing 13 antibiotic regimens. The level of evidence for mortality comparisons ranged from very low to moderate. No significant difference in 28 day mortality was found among all beta-lactam regimens. Only the combination of meropenem plus aerosolized colistin was associated with a significant decrease of mortality compared to using intravenous colistin alone (OR = 0.43; 95% credible interval [0.17-0.94]), based on the results of the smallest trial included. The clinical failure rate of ceftazidime was higher than meropenem with (OR = 1.97; 95% CrI [1.19-3.45]) or without aerosolized colistin (OR = 1.40; 95% CrI [1.00-2.01]), imipemen/cilastatin/relebactam (OR = 1.74; 95% CrI [1.03-2.90]) and ceftazidime/avibactam (OR = 1.48; 95% CrI [1.02-2.20]). For microbiological cure, no substantial difference between regimens was found, but ceftolozane/tazobactam had the highest probability of being superior to comparators. In safety analyses, there was no significant difference between treatments for the occurrence of adverse events, but acute kidney failure was more common in patients receiving intravenous colistin. CONCLUSIONS: This network meta-analysis suggests that most antibiotic regimens, including new combinations and cefiderocol, have similar efficacy and safety in treating susceptible Gram-negative bacilli in NP. Further studies are necessary for NP caused by multidrug-resistant bacteria. Registration PROSPERO CRD42021226603.

5.
Semin Respir Crit Care Med ; 45(2): 255-265, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266998

RESUMEN

Due to higher survival rates with good quality of life, related to new treatments in the fields of oncology, hematology, and transplantation, the number of immunocompromised patients is increasing. But these patients are at high risk of intensive care unit admission because of numerous complications. Acute respiratory failure due to severe community-acquired pneumonia is one of the leading causes of admission. In this setting, the need for invasive mechanical ventilation is up to 60%, associated with a high hospital mortality rate of around 40 to 50%. A wide range of pathogens according to the reason of immunosuppression is associated with severe pneumonia in those patients: documented bacterial pneumonia represents a third of cases, viral and fungal pneumonia both account for up to 15% of cases. For patients with an undetermined etiology despite comprehensive diagnostic workup, the hospital mortality rate is very high. Thus, a standardized diagnosis strategy should be defined to increase the diagnosis rate and prescribe the appropriate treatment. This review focuses on the benefit-to-risk ratio of invasive or noninvasive strategies, in the era of omics, for the management of critically ill immunocompromised patients with severe pneumonia in terms of diagnosis and oxygenation.


Asunto(s)
Infecciones Comunitarias Adquiridas , Ventilación no Invasiva , Neumonía Bacteriana , Neumonía , Humanos , Calidad de Vida , Respiración Artificial , Huésped Inmunocomprometido , Infecciones Comunitarias Adquiridas/terapia , Unidades de Cuidados Intensivos
6.
Ann Intensive Care ; 14(1): 1, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180544

RESUMEN

BACKGROUND: Various Positive End-Expiratory Pressure (PEEP) titration strategies have been proposed to optimize ventilation in patients with acute respiratory distress syndrome (ARDS). We aimed to compare PEEP titration strategies based on electrical impedance tomography (EIT) to methods derived from respiratory system mechanics with or without esophageal pressure measurements, in terms of PEEP levels and association with recruitability. METHODS: Nineteen patients with ARDS were enrolled. Recruitability was assessed by the estimated Recruitment-to-Inflation ratio (R/Iest) between PEEP 15 and 5 cmH2O. Then, a decremental PEEP trial from PEEP 20 to 5 cmH2O was performed. PEEP levels determined by the following strategies were studied: (1) plateau pressure 28-30 cmH2O (Express), (2) minimal positive expiratory transpulmonary pressure (Positive PLe), (3) center of ventilation closest to 0.5 (CoV) and (4) intersection of the EIT-based overdistension and lung collapse curves (Crossing Point). In addition, the PEEP levels determined by the Crossing Point strategy were assessed using different PEEP ranges during the decremental PEEP trial. RESULTS: Express and CoV strategies led to higher PEEP levels than the Positive PLe and Crossing Point ones (17 [14-17], 20 [17-20], 8 [5-11], 10 [8-11] respectively, p < 0.001). For each strategy, there was no significant association between the optimal PEEP level and R/Iest (Crossing Point: r2 = 0.073, p = 0.263; CoV: r2 < 0.001, p = 0.941; Express: r2 < 0.001, p = 0.920; Positive PLe: r2 = 0.037, p = 0.461). The PEEP level obtained with the Crossing Point strategy was impacted by the PEEP range used during the decremental PEEP trial. CONCLUSIONS: CoV and Express strategies led to higher PEEP levels than the Crossing Point and Positive PLe strategies. Optimal PEEP levels proposed by these four methods were not associated with recruitability. Recruitability should be specifically assessed in ARDS patients to optimize PEEP titration.

7.
Crit Care ; 27(1): 343, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667379

RESUMEN

BACKGROUND: Respiratory mechanics is a key element to monitor mechanically ventilated patients and guide ventilator settings. Besides the usual basic assessments, some more complex explorations may allow to better characterize patients' respiratory mechanics and individualize ventilation strategies. These advanced respiratory mechanics assessments including esophageal pressure measurements and complete airway closure detection may be particularly relevant in critically ill obese patients. This study aimed to comprehensively assess respiratory mechanics in obese and non-obese ICU patients with or without ARDS and evaluate the contribution of advanced respiratory mechanics assessments compared to basic assessments in these patients. METHODS: All intubated patients admitted in two ICUs for any cause were prospectively included. Gas exchange and respiratory mechanics including esophageal pressure and end-expiratory lung volume (EELV) measurements and low-flow insufflation to detect complete airway closure were assessed in standardized conditions (tidal volume of 6 mL kg-1 predicted body weight (PBW), positive end-expiratory pressure (PEEP) of 5 cmH2O) within 24 h after intubation. RESULTS: Among the 149 analyzed patients, 52 (34.9%) were obese and 90 (60.4%) had ARDS (65.4% and 57.8% of obese and non-obese patients, respectively, p = 0.385). A complete airway closure was found in 23.5% of the patients. It was more frequent in obese than in non-obese patients (40.4% vs 14.4%, p < 0.001) and in ARDS than in non-ARDS patients (30% vs. 13.6%, p = 0.029). Respiratory system and lung compliances and EELV/PBW were similarly decreased in obese patients without ARDS and obese or non-obese patients with ARDS. Chest wall compliance was not impacted by obesity or ARDS, but end-expiratory esophageal pressure was higher in obese than in non-obese patients. Chest wall contribution to respiratory system compliance differed widely between patients but was not predictable by their general characteristics. CONCLUSIONS: Most respiratory mechanics features are similar in obese non-ARDS and non-obese ARDS patients, but end-expiratory esophageal pressure is higher in obese patients. A complete airway closure can be found in around 25% of critically ill patients ventilated with a PEEP of 5 cmH2O. Advanced explorations may allow to better characterize individual respiratory mechanics and adjust ventilation strategies in some patients. Trial registration NCT03420417 ClinicalTrials.gov (February 5, 2018).


Asunto(s)
Enfermedad Crítica , Síndrome de Dificultad Respiratoria , Humanos , Peso Corporal , Obesidad/complicaciones , Respiración Artificial , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/terapia , Mecánica Respiratoria
8.
Ann Intensive Care ; 13(1): 79, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37658994

RESUMEN

BACKGROUND: Acute respiratory failure (ARF) is the leading cause of intensive care unit (ICU) admission in patients with Acute Myeloid Leukemia (AML) and data on prognostic factors affecting short-term outcome are needed. METHODS: This is a post-hoc analysis of a multicenter, international prospective cohort study on immunocompromised patients with ARF admitted to ICU. We evaluated hospital mortality and associated risk factors in patients with AML and ARF; secondly, we aimed to define specific subgroups within our study population through a cluster analysis. RESULTS: Overall, 201 of 1611 immunocompromised patients with ARF had AML and were included in the analysis. Hospital mortality was 46.8%. Variables independently associated with mortality were ECOG performance status ≥ 2 (OR = 2.79, p = 0.04), cough (OR = 2.94, p = 0.034), use of vasopressors (OR = 2.79, p = 0.044), leukemia-specific pulmonary involvement [namely leukostasis, pulmonary infiltration by blasts or acute lysis pneumopathy (OR = 4.76, p = 0.011)] and liver SOFA score (OR = 1.85, p = 0.014). Focal alveolar chest X-ray pattern was associated with survival (OR = 0.13, p = 0.001). We identified 3 clusters, that we named on the basis of the most frequently clinical, biological and radiological features found in each cluster: a "leukemic cluster", with high-risk AML patients with isolated, milder ARF; a "pulmonary cluster", consisting of symptomatic, highly oxygen-requiring, severe ARF with diffuse radiological findings in heavily immunocompromised patients; a clinical "inflammatory cluster", including patients with multi-organ failures in addition to ARF. When included in the multivariate analysis, cluster 2 and 3 were independently associated with hospital mortality. CONCLUSIONS: Among AML patients with ARF, factors associated with a worse outcome are related to patient's background (performance status, leukemic pulmonary involvement), symptoms, radiological findings, the need for vasopressors and the liver SOFA score. We identified three specific ARF syndromes in AML patients, which showed a prognostic significance and could guide clinicians to optimize management strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...