Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
PLoS Genet ; 20(5): e1011230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713708

RESUMEN

Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency <0.005) and potentially deleterious (CADD>15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease.


Asunto(s)
Distrofia Endotelial de Fuchs , Factor de Transcripción 4 , Expansión de Repetición de Trinucleótido , Humanos , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Expansión de Repetición de Trinucleótido/genética , Distrofia Endotelial de Fuchs/genética , Empalme Alternativo/genética , Transcriptoma/genética , Células Endoteliales/metabolismo , Endotelio Corneal/metabolismo , Endotelio Corneal/patología , Masculino
2.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674104

RESUMEN

ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Pliegue de Proteína , Transporte de Proteínas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Humanos , Pliegue de Proteína/efectos de los fármacos , Células HEK293 , Membrana Celular/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología
3.
Prog Retin Eye Res ; 100: 101248, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369182

RESUMEN

Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.


Asunto(s)
Células Madre Pluripotentes , Enfermedades de la Retina , Animales , Humanos , Diferenciación Celular/fisiología , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/patología , Epitelio Pigmentado de la Retina/patología
4.
Mol Ther ; 32(3): 837-851, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38243599

RESUMEN

The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Empalme del ARN , Humanos , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Stargardt/genética , Mutación , Células Fotorreceptoras
5.
Am J Ophthalmol ; 261: 112-120, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37977507

RESUMEN

PURPOSE: RP2-associated retinopathy typically causes severe early onset retinitis pigmentosa (RP) in affected males. However, there is a scarcity of reports describing the clinical phenotype of female carriers. We tested the hypothesis that RP2 variants manifest in female carriers with a range of functional and anatomic characteristics. DESIGN: Retrospective case series. METHODS: Females with disease-causing variants in RP2 were identified from investigation of pedigrees affected by RP2 retinopathy. All case notes and results of molecular genetic testing, retinal imaging (fundus autofluorescence imaging, optical coherence tomography (OCT)), and electrophysiology were reviewed. RESULTS: Forty pedigrees were investigated. Twenty-nine pedigrees had obligate carriers or molecularly confirmed female members with recorded relevant history and/or examination. For 8 pedigrees, data were available only from history, with patients reporting affected female relatives with RP in 4 cases and unaffected female relatives in the other 4 cases. Twenty-seven females from 21 pedigrees were examined by a retinal genetics specialist. Twenty-three patients (85%) reported no complaints and had normal vision and 4 patients had RP-associated complaints (15%). Eight patients had normal fundus examination (30%), 10 had a tapetal-like reflex (TLR; 37%), 5 had scattered peripheral pigmentation (19%), and the 4 symptomatic patients had fundus findings compatible with RP (15%). All asymptomatic patients with normal fundus, TLR, or asymptomatic pigmentary changes had a continuous ellipsoid zone on OCT when available. The electroretinograms revealed mild to severe photoreceptor dysfunction in 9 of 11 subjects, often asymmetrical, including 5 with pattern electroretinogram evidence of symmetrical (n = 4) or unilateral (n = 1 subject) macular dysfunction. CONCLUSIONS: Most carriers were asymptomatic, exhibiting subclinical characteristics such as TLR and pigmentary changes. However, female carriers of RP2 variants can manifest RP. Family history of affected females with RP does not exclude X-linked disease. The phenotypic spectrum as described herein has prognostic and counselling implications for RP2 carriers and patients.

6.
Mol Ther Methods Clin Dev ; 29: 522-531, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37305852

RESUMEN

Mutations in the lebercilin-encoding gene LCA5 cause one of the most severe forms of Leber congenital amaurosis, an early-onset retinal disease that results in severe visual impairment. Here, we report on the generation of a patient-specific cellular model to study LCA5-associated retinal disease. CRISPR-Cas9 technology was used to correct a homozygous nonsense variant in LCA5 (c.835C>T; p.Q279∗) in patient-derived induced pluripotent stem cells (iPSCs). The absence of off-target editing in gene-corrected (isogenic) control iPSCs was demonstrated by whole-genome sequencing. We differentiated the patient, gene-corrected, and unrelated control iPSCs into three-dimensional retina-like cells, so-called retinal organoids. We observed opsin and rhodopsin mislocalization to the outer nuclear layer in patient-derived but not in the gene-corrected or unrelated control organoids. We also confirmed the rescue of lebercilin expression and localization along the ciliary axoneme within the gene-corrected organoids. Here, we show the potential of combining precise single-nucleotide gene editing with the iPSC-derived retinal organoid system for the generation of a cellular model of early-onset retinal disease.

7.
Cells ; 12(12)2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37371046

RESUMEN

The photoreceptor outer segment is a highly specialized primary cilium that is essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290, there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290-related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids by modulating the expression of rhodopsin and by targeting cilia and synaptic plasticity pathways. This work sheds light on the mechanism of action of eupatilin and supports its potential as a variant-independent approach for CEP290-associated ciliopathies.


Asunto(s)
Cilios , Ciliopatías , Humanos , Cilios/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Rodopsina/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Flavonoides , Ciliopatías/tratamiento farmacológico , Ciliopatías/genética , Ciliopatías/metabolismo
8.
Mol Ther Nucleic Acids ; 31: 674-688, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36910710

RESUMEN

Stargardt disease type 1 (STGD1) is the most common hereditary form of maculopathy and remains untreatable. STGD1 is caused by biallelic variants in the ABCA4 gene, which encodes the ATP-binding cassette (type 4) protein (ABCA4) that clears toxic byproducts of the visual cycle. The c.5461-10T>C p.[Thr1821Aspfs∗6,Thr1821Valfs∗13] variant is the most common severe disease-associated variant, and leads to exon skipping and out-of-frame ABCA4 transcripts that prevent translation of functional ABCA4 protein. Homozygous individuals typically display early onset STGD1 and are legally blind by early adulthood. Here, we applied antisense oligonucleotides (AONs) to promote exon inclusion and restore wild-type RNA splicing of ABCA4 c.5461-10T>C. The effect of AONs was first investigated in vitro using an ABCA4 midigene model. Subsequently, the best performing AONs were administered to homozygous c.5461-10T>C 3D human retinal organoids. Isoform-specific digital polymerase chain reaction revealed a significant increase in correctly spliced transcripts after treatment with the lead AON, QR-1011, up to 53% correct transcripts at a 3 µM dose. Furthermore, western blot and immunohistochemistry analyses identified restoration of ABCA4 protein after treatment. Collectively, we identified QR-1011 as a potent splice-correcting AON and a possible therapeutic intervention for patients harboring the severe ABCA4 c.5461-10T>C variant.

9.
Ophthalmology ; 130(4): 413-422, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36423731

RESUMEN

PURPOSE: To review and describe in detail the clinical course, functional and anatomic characteristics of RP2-associated retinal degeneration. DESIGN: Retrospective case series. PARTICIPANTS: Male participants with disease-causing variants in the RP2 gene. METHODS: Review of all case notes and results of molecular genetic testing, retinal imaging (fundus autofluorescence [FAF] imaging, OCT), and electrophysiology assessment. MAIN OUTCOME MEASURES: Molecular genetic testing, clinical findings including best-corrected visual acuity (BCVA), qualitative and quantitative retinal imaging analysis, and electrophysiology parameters. RESULTS: Fifty-four molecularly confirmed patients were identified from 38 pedigrees. Twenty-eight disease-causing variants were identified, with 20 not previously clinically characterized. Fifty-three patients (98.1%) presented with retinitis pigmentosa. The mean age of onset (range ± standard deviation [SD]) was 9.6 years (1-57 ± 9.2 years). Forty-four patients (91.7%) had childhood-onset disease, with mean age of onset of 7.6 years. The most common first symptom was night blindness (68.8%). Mean BCVA (range ± SD) was 0.91 logarithm of the minimum angle of resolution (logMAR) (0-2.7 ± 0.80) and 0.94 logMAR (0-2.7 ± 0.78) for right and left eyes, respectively. On the basis of the World Health Organization visual impairment criteria, 18 patients (34%) had low vision. The majority (17/22) showed electroretinogram (ERG) evidence of a rod-cone dystrophy. Pattern ERG P50 was undetectable in all but 2 patients. A range of FAF findings was observed, from normal to advanced atrophy. There were no statistically significant differences between right and left eyes for ellipsoid zone width (EZW) and outer nuclear layer (ONL) thickness. The mean annual rate of EZW loss was 219 µm/year, and the mean annual decrease in ONL thickness was 4.93 µm/year. No patient with childhood-onset disease had an identifiable ellipsoid zone (EZ) after the age of 26 years at baseline or follow-up. Four patients had adulthood-onset disease and a less severe phenotype. CONCLUSIONS: This study details the clinical phenotype of RP2 retinopathy in a large cohort. The majority presented with early-onset severe retinal degeneration, with early macular involvement and complete loss of the foveal photoreceptor layer by the third decade of life. Full-field ERGs revealed rod-cone dystrophy in the vast majority, but with generalized (peripheral) cone system involvement of widely varying severity in the first 2 decades of life. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Asunto(s)
Distrofias de Conos y Bastones , Degeneración Retiniana , Humanos , Masculino , Distrofias de Conos y Bastones/diagnóstico , Distrofias de Conos y Bastones/genética , Electrorretinografía , Proteínas de Unión al GTP , Proteínas de la Membrana , Biología Molecular , Retina , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/genética , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad
10.
Hum Mol Genet ; 32(4): 595-607, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36084042

RESUMEN

The purpose of this paper is to identify likely pathogenic non-coding variants in inherited retinal dystrophy (IRD) genes, using genome sequencing (GS). Patients with IRD were recruited to the study and underwent comprehensive ophthalmological evaluation and GS. The results of GS were investigated through virtual gene panel analysis, and plausible pathogenic variants and clinical phenotype evaluated by the multidisciplinary team (MDT) discussion. For unsolved patients in whom a specific gene was suspected to harbor a missed pathogenic variant, targeted re-analysis of non-coding regions was performed on GS data. Candidate variants were functionally tested by messenger RNA analysis, minigene or luciferase reporter assays. Previously unreported, likely pathogenic, non-coding variants in 7 genes (PRPF31, NDP, IFT140, CRB1, USH2A, BBS10 and GUCY2D), were identified in 11 patients. These were shown to lead to mis-splicing (PRPF31, IFT140, CRB1 and USH2A) or altered transcription levels (BBS10 and GUCY2D). MDT-led, phenotype-driven, non-coding variant re-analysis of GS is effective in identifying the missing causative alleles.


Asunto(s)
Distrofias Retinianas , Humanos , Mutación , Linaje , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Secuenciación Completa del Genoma , Grupo de Atención al Paciente , Análisis Mutacional de ADN/métodos , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
11.
Nat Commun ; 13(1): 6595, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329026

RESUMEN

Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.


Asunto(s)
Ciliopatías , Distrofias Retinianas , Masculino , Animales , Humanos , Cilios/metabolismo , Pez Cebra/genética , Caenorhabditis elegans/metabolismo , Semen/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Proteínas/metabolismo
12.
Stem Cell Reports ; 17(10): 2187-2202, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36084639

RESUMEN

Leber congenital amaurosis type 4 (LCA4), caused by AIPL1 mutations, is characterized by severe sight impairment in infancy and rapidly progressing degeneration of photoreceptor cells. We generated retinal organoids using induced pluripotent stem cells (iPSCs) from renal epithelial cells obtained from four children with AIPL1 nonsense mutations. iPSC-derived photoreceptors exhibited the molecular hallmarks of LCA4, including undetectable AIPL1 and rod cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6) compared with control or CRISPR-corrected organoids. Increased levels of cGMP were detected. The translational readthrough-inducing drug (TRID) PTC124 was investigated as a potential therapeutic agent. LCA4 retinal organoids exhibited low levels of rescue of full-length AIPL1. However, this was insufficient to fully restore PDE6 in photoreceptors and reduce cGMP. LCA4 retinal organoids are a valuable platform for in vitro investigation of novel therapeutic agents.


Asunto(s)
Amaurosis Congénita de Leber , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Niño , Codón sin Sentido , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Guanosina Monofosfato , Humanos , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/terapia , Organoides/metabolismo , Oxadiazoles , Hidrolasas Diéster Fosfóricas/genética
13.
Hum Mol Genet ; 31(20): 3478-3493, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35652445

RESUMEN

Autosomal dominant optic atrophy (DOA) is the most common inherited optic neuropathy, characterized by the preferential loss of retinal ganglion cells (RGCs), resulting in optic nerve degeneration and progressive bilateral central vision loss. More than 60% of genetically confirmed patients with DOA carry variants in the nuclear OPA1 gene, which encodes for a ubiquitously expressed, mitochondrial GTPase protein. OPA1 has diverse functions within the mitochondrial network, facilitating inner membrane fusion and cristae modelling, regulating mitochondrial DNA maintenance and coordinating mitochondrial bioenergetics. There are currently no licensed disease-modifying therapies for DOA and the disease mechanisms driving RGC degeneration are poorly understood. Here, we describe the generation of isogenic, heterozygous OPA1 null induced pluripotent stem cell (iPSC) (OPA1+/-) through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of a control cell line, in conjunction with the generation of DOA patient-derived iPSC carrying OPA1 variants, namely, the c.2708_2711delTTAG variant (DOA iPSC), and previously reported missense variant iPSC line (c.1334G>A, DOA plus [DOA]+ iPSC) and CRISPR/Cas9 corrected controls. A two-dimensional (2D) differentiation protocol was used to study the effect of OPA1 variants on iPSC-RGC differentiation and mitochondrial function. OPA1+/-, DOA and DOA+ iPSC showed no differentiation deficit compared to control iPSC lines, exhibiting comparable expression of all relevant markers at each stage of differentiation. OPA1+/- and OPA1 variant iPSC-RGCs exhibited impaired mitochondrial homeostasis, with reduced bioenergetic output and compromised mitochondrial DNA maintenance. These data highlight mitochondrial deficits associated with OPA1 dysfunction in human iPSC-RGCs, and establish a platform to study disease mechanisms that contribute to RGC loss in DOA, as well as potential therapeutic interventions.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Óptica Autosómica Dominante , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Atrofia Óptica Autosómica Dominante/genética , Células Ganglionares de la Retina/metabolismo
14.
Nat Med ; 28(5): 1014-1021, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35379979

RESUMEN

CEP290-associated Leber congenital amaurosis type 10 (LCA10) is a retinal disease resulting in childhood blindness. Sepofarsen is an RNA antisense oligonucleotide targeting the c.2991+1655A>G variant in the CEP290 gene to treat LCA10. In this open-label, phase 1b/2 ( NCT03140969 ), 12-month, multicenter, multiple-dose, dose-escalation trial, six adult patients and five pediatric patients received ≤4 doses of intravitreal sepofarsen into the worse-seeing eye. The primary objective was to evaluate sepofarsen safety and tolerability via the frequency and severity of ocular adverse events (AEs); secondary objectives were to evaluate pharmacokinetics and efficacy via changes in functional outcomes. Six patients received sepofarsen 160 µg/80 µg, and five patients received sepofarsen 320 µg/160 µg. Ten of 11 (90.9%) patients developed ocular AEs in the treated eye (5/6 with 160 µg/80 µg; 5/5 with 320 µg/160 µg) versus one of 11 (9.1%) in the untreated eye; most were mild in severity and dose dependent. Eight patients developed cataracts, of which six (75.0%) were categorized as serious (2/3 with 160 µg/80 µg; 4/5 with 320 µg/160 µg), as lens replacement was required. As the 160-µg/80-µg group showed a better benefit-risk profile, higher doses were discontinued or not initiated. Statistically significant improvements in visual acuity and retinal sensitivity were reported (post hoc analysis). The manageable safety profile and improvements reported in this trial support the continuation of sepofarsen development.


Asunto(s)
Amaurosis Congénita de Leber , Adulto , Antígenos de Neoplasias/genética , Ceguera/genética , Proteínas de Ciclo Celular/genética , Niño , Proteínas del Citoesqueleto/metabolismo , Humanos , Amaurosis Congénita de Leber/tratamiento farmacológico , Amaurosis Congénita de Leber/genética , Oligonucleótidos Antisentido/efectos adversos , Visión Ocular
15.
Methods Mol Biol ; 2434: 245-255, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213022

RESUMEN

Inherited retinal dystrophies, such as Leber congenital amaurosis, Stargardt disease, and retinitis pigmentosa, are characterized by photoreceptor dysfunction and death and currently have few treatment options. Recent technological advances in induced pluripotent stem cell (iPSC) technology and differentiation methods mean that human photoreceptors can now be studied in vitro. For example, retinal organoids provide a platform to study the development of the human retina and mechanisms of diseases in the dish, as well as being a potential source for cell transplantation. Here, we describe differentiation protocols for 3D cultures that produce retinal organoids containing photoreceptors with rudimentary outer segments. These protocols can be used as a model to understand retinal disease mechanisms and test potential therapies, including antisense oligonucleotides (AONs) to alter gene expression or RNA processing. This "retina in a dish" model is well suited for use with AONs, as the organoids recapitulate patient mutations in the correct genomic and cellular context, to test potential efficacy and examine off-target effects on the translational path to the clinic.


Asunto(s)
Células Madre Pluripotentes Inducidas , Retinitis Pigmentosa , Diferenciación Celular/genética , Humanos , Organoides , Células Fotorreceptoras , Retina/metabolismo , Retinitis Pigmentosa/metabolismo
16.
J Neuroophthalmol ; 42(1): 35-44, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34629400

RESUMEN

BACKGROUND: Inherited optic neuropathies (IONs) cause progressive irreversible visual loss in children and young adults. There are limited disease-modifying treatments, and most patients progress to become severely visually impaired, fulfilling the legal criteria for blind registration. The seminal discovery of the technique for reprogramming somatic nondividing cells into induced pluripotent stem cells (iPSCs) has opened several exciting opportunities in the field of ION research and treatment. EVIDENCE ACQUISITION: A systematic review of the literature was conducted with PubMed using the following search terms: autosomal dominant optic atrophy, ADOA, dominant optic atrophy, DOA, Leber hereditary optic neuropathy, LHON, optic atrophy, induced pluripotent stem cell, iPSC, iPSC derived, iPS, stem cell, retinal ganglion cell, and RGC. Clinical trials were identified on the ClinicalTrials.gov website. RESULTS: This review article is focused on disease modeling and the therapeutic strategies being explored with iPSC technologies for the 2 most common IONs, namely, dominant optic atrophy and Leber hereditary optic neuropathy. The rationale and translational advances for cell-based and gene-based therapies are explored, as well as opportunities for neuroprotection and drug screening. CONCLUSIONS: iPSCs offer an elegant, patient-focused solution to the investigation of the genetic defects and disease mechanisms underpinning IONs. Furthermore, this group of disorders is uniquely amenable to both the disease modeling capability and the therapeutic potential that iPSCs offer. This fast-moving area will remain at the forefront of both basic and translational ION research in the coming years, with the potential to accelerate the development of effective therapies for patients affected with these blinding diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Óptica Autosómica Dominante , Atrofia Óptica Hereditaria de Leber , Enfermedades del Nervio Óptico , Niño , Humanos , Iones , Atrofia Óptica Autosómica Dominante/diagnóstico , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/terapia , Atrofia Óptica Hereditaria de Leber/diagnóstico , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/terapia , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/terapia , Adulto Joven
17.
Mol Ther Nucleic Acids ; 26: 432-443, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34589289

RESUMEN

Autosomal dominant optic atrophy (DOA) is the most common inherited optic neuropathy in the United Kingdom. DOA has an insidious onset in early childhood, typically presenting with bilateral, central visual loss caused by the preferential loss of retinal ganglion cells. 60%-70% of genetically confirmed DOA cases are associated with variants in OPA1, a ubiquitously expressed GTPase that regulates mitochondrial homeostasis through coordination of inner membrane fusion, maintenance of cristae structure, and regulation of bioenergetic output. Whether genetic correction of OPA1 pathogenic variants can alleviate disease-associated phenotypes remains unknown. Here, we demonstrate generation of patient-derived OPA1 c.1334G>A: p.R445H mutant induced pluripotent stem cells (iPSCs), followed by correction of OPA1 through CRISPR-Cas9-guided homology-directed repair (HDR) and evaluate the effect of OPA1 correction on mitochondrial homeostasis. CRISPR-Cas9 gene editing demonstrated an efficient method of OPA1 correction, with successful gene correction in 57% of isolated iPSCs. Correction of OPA1 restored mitochondrial homeostasis, re-establishing the mitochondrial network and basal respiration and ATP production levels. In addition, correction of OPA1 re-established the levels of wild-type (WT) mitochondrial DNA (mtDNA) and reduced susceptibility to apoptotic stimuli. These data demonstrate that nuclear gene correction can restore mitochondrial homeostasis and improve mtDNA integrity in DOA patient-derived cells carrying an OPA1 variant.

18.
Cell Mol Life Sci ; 78(19-20): 6505-6532, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34420069

RESUMEN

Inherited retinal diseases (IRDs) cause progressive loss of light-sensitive photoreceptors in the eye and can lead to blindness. Gene-based therapies for IRDs have shown remarkable progress in the past decade, but the vast majority of forms remain untreatable. In the era of personalised medicine, induced pluripotent stem cells (iPSCs) emerge as a valuable system for cell replacement and to model IRD because they retain the specific patient genome and can differentiate into any adult cell type. Three-dimensional (3D) iPSCs-derived retina-like tissue called retinal organoid contains all major retina-specific cell types: amacrine, bipolar, horizontal, retinal ganglion cells, Müller glia, as well as rod and cone photoreceptors. Here, we describe the main applications of retinal organoids and provide a comprehensive overview of the state-of-art analysis methods that apply to this model system. Finally, we will discuss the outlook for improvements that would bring the cellular model a step closer to become an established system in research and treatment development of IRDs.


Asunto(s)
Organoides/fisiología , Retina/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Neuroglía/fisiología , Enfermedades de la Retina/fisiopatología , Células Fotorreceptoras Retinianas Bastones/fisiología
19.
Am J Hum Genet ; 108(2): 295-308, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508235

RESUMEN

Retinitis pigmentosa (RP) is a group of progressive retinal degenerations of mostly monogenic inheritance, which cause blindness in about 1:3,500 individuals worldwide. Heterozygous variants in the rhodopsin (RHO) gene are the most common cause of autosomal dominant RP (adRP). Among these, missense variants at C-terminal proline 347, such as p.Pro347Ser, cause severe adRP recurrently in European affected individuals. Here, for the first time, we use CRISPR/Cas9 to selectively target the p.Pro347Ser variant while preserving the wild-type RHO allele in vitro and in a mouse model of adRP. Detailed in vitro, genomic, and biochemical characterization of the rhodopsin C-terminal editing demonstrates a safe downregulation of p.Pro347Ser expression leading to partial recovery of photoreceptor function in a transgenic mouse model treated with adeno-associated viral vectors. This study supports the safety and efficacy of CRISPR/Cas9-mediated allele-specific editing and paves the way for a permanent and precise correction of heterozygous variants in dominantly inherited retinal diseases.


Asunto(s)
Edición Génica , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Rodopsina/genética , Alelos , Animales , Sistemas CRISPR-Cas , Línea Celular , Dependovirus/genética , Modelos Animales de Enfermedad , Electrorretinografía , Terapia Genética , Humanos , Mutación INDEL , Ratones , Ratones Transgénicos , Mutación Missense , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Retina/fisiopatología , Rodopsina/metabolismo
20.
Am J Hum Genet ; 107(5): 802-814, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33022222

RESUMEN

The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.


Asunto(s)
Cromosomas Humanos Par 17/química , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Retinitis Pigmentosa/genética , Factores de Transcripción/genética , Adulto , Secuencia de Aminoácidos , Diferenciación Celular , Reprogramación Celular , Niño , Mapeo Cromosómico , Estudios de Cohortes , Elementos de Facilitación Genéticos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Genes Dominantes , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Polimorfismo Genético , Cultivo Primario de Células , Células Fotorreceptoras Retinianas Conos/patología , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factores de Transcripción/metabolismo , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...