Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biophys J ; 117(5): 810-816, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31326106

RESUMEN

The arrangement of receptors in the plasma membrane strongly affects the ability of a cell to sense its environment both in terms of sensitivity and in terms of spatial resolution. The spatial and temporal arrangement of the receptors is affected in turn by the mechanical properties and the structure of the cell membrane. Here, we focus on characterizing the flow of the membrane in response to the motion of a protein embedded in it. We do so by measuring the correlated diffusion of extracellularly tagged transmembrane neurotrophin receptors TrkB and p75 on transfected neuronal cells. In accord with previous reports, we find that the motion of single receptors exhibits transient confinement to submicron domains. We confirm predictions based on hydrodynamics of fluid membranes, finding long-range correlations in the motion of the receptors in the plasma membrane. However, we discover that these correlations do not persist for long ranges, as predicted, but decay exponentially, with a typical decay length on the scale of the average confining domain size.


Asunto(s)
Membrana Celular/fisiología , Reología , Animales , Difusión , Colorantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Neuronas/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
2.
Biophys J ; 117(2): 185-192, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31280841

RESUMEN

Diffusion plays a crucial role in many biological processes including signaling, cellular organization, transport mechanisms, and more. Direct observation of molecular movement by single-particle-tracking experiments has contributed to a growing body of evidence that many cellular systems do not exhibit classical Brownian motion but rather anomalous diffusion. Despite this evidence, characterization of the physical process underlying anomalous diffusion remains a challenging problem for several reasons. First, different physical processes can exist simultaneously in a system. Second, commonly used tools for distinguishing between these processes are based on asymptotic behavior, which is experimentally inaccessible in most cases. Finally, an accurate analysis of the diffusion model requires the calculation of many observables because different transport modes can result in the same diffusion power-law α, which is typically obtained from the mean-square displacements (MSDs). The outstanding challenge in the field is to develop a method to extract an accurate assessment of the diffusion process using many short trajectories with a simple scheme that is applicable at the nonexpert level. Here, we use deep learning to infer the underlying process resulting in anomalous diffusion. We implement a neural network to classify single-particle trajectories by diffusion type: Brownian motion, fractional Brownian motion and continuous time random walk. Further, we demonstrate the applicability of our network architecture for estimating the Hurst exponent for fractional Brownian motion and the diffusion coefficient for Brownian motion on both simulated and experimental data. These networks achieve greater accuracy than time-averaged MSD analysis on simulated trajectories while only requiring as few as 25 steps. When tested on experimental data, both net and ensemble MSD analysis converge to similar values; however, the net needs only half the number of trajectories required for ensemble MSD to achieve the same confidence interval. Finally, we extract diffusion parameters from multiple extremely short trajectories (10 steps) using our approach.


Asunto(s)
Aprendizaje Profundo , Imagen Individual de Molécula , Simulación por Computador , Difusión , Modelos Biológicos
3.
Sci Signal ; 11(529)2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739881

RESUMEN

Tropomyosin-related tyrosine kinase B (TrkB) is the receptor for brain-derived neurotrophic factor (BDNF) and provides critical signaling that supports the development and function of the mammalian nervous system. Like other receptor tyrosine kinases (RTKs), TrkB is thought to signal as a dimer. Using cell imaging and biochemical assays, we found that TrkB acted as a monomeric receptor at the plasma membrane regardless of its binding to BDNF and initial activation. Dimerization occurred only after the internalization and accumulation of TrkB monomers within BDNF-containing endosomes. We further showed that dynamin-mediated endocytosis of TrkB-BDNF was required for the effective activation of the kinase AKT but not of the kinase ERK1/2. Thus, we report a previously uncharacterized mode of monomeric signaling for an RTK and a specific role for the endosome in TrkB homodimerization.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Multimerización de Proteína , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Animales , Endocitosis , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
Methods Cell Biol ; 131: 365-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26794524

RESUMEN

Neurons are highly polarized cells, with very long axons. Neurotrophic factors like the neuronal growth factor (NGF) are secreted from neuronal targets to promote neuron survival and proper function. These neurotrophic factors must undergo retrograde axonal transport towards the cell body, wherein they initiate signaling pathways important for neurons' various functions and overall health. This process of long-distance axonal signaling is conducted by the dynein motor protein, which transmits signaling endosomes of ligand-receptor complexes retrogradely along microtubule tracks. Here we describe step by step the use of polydimethylsiloxane (PDMS) compartmentalized microfluidic chambers for tracking axonal transport of trophic factors, with a focus on labeled NGF. We describe in detail how to fabricate the molds, assemble the PDMS platform, plate neurons and image, as well as analyze NGF transport along the axon. This method is useful for studying molecular communication mechanisms within the neuron's different compartments as well as between the neuron and its diverse microenvironments, both in health and under pathological conditions.


Asunto(s)
Transporte Axonal/fisiología , Axones/metabolismo , Microfluídica/métodos , Factor de Crecimiento Nervioso/metabolismo , Puntos Cuánticos/metabolismo , Animales , Células Cultivadas , Dineínas Citoplasmáticas/metabolismo , Dimetilpolisiloxanos/química , Embrión de Mamíferos/inervación , Femenino , Masculino , Ratones , Ratones Endogámicos ICR
5.
Mol Cell Proteomics ; 15(2): 506-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26598648

RESUMEN

Synapse disruption takes place in many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the mechanistic understanding of this process is still limited. We set out to study a possible role for dynein in synapse integrity. Cytoplasmic dynein is a multisubunit intracellular molecule responsible for diverse cellular functions, including long-distance transport of vesicles, organelles, and signaling factors toward the cell center. A less well-characterized role dynein may play is the spatial clustering and anchoring of various factors including mRNAs in distinct cellular domains such as the neuronal synapse. Here, in order to gain insight into dynein functions in synapse integrity and disruption, we performed a screen for novel dynein interactors at the synapse. Dynein immunoprecipitation from synaptic fractions of the ALS model mSOD1(G93A) and wild-type controls, followed by mass spectrometry analysis on synaptic fractions of the ALS model mSOD1(G93A) and wild-type controls, was performed. Using advanced network analysis, we identified Staufen1, an RNA-binding protein required for the transport and localization of neuronal RNAs, as a major mediator of dynein interactions via its interaction with protein phosphatase 1-beta (PP1B). Both in vitro and in vivo validation assays demonstrate the interactions of Staufen1 and PP1B with dynein, and their colocalization with synaptic markers was altered as a result of two separate ALS-linked mutations: mSOD1(G93A) and TDP43(A315T). Taken together, we suggest a model in which dynein's interaction with Staufen1 regulates mRNA localization along the axon and the synapses, and alterations in this process may correlate with synapse disruption and ALS toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Dineínas Citoplasmáticas/genética , Proteómica , Proteínas de Unión al ARN/biosíntesis , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Axones/metabolismo , Axones/patología , Dineínas Citoplasmáticas/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Proteínas de Unión al ARN/genética , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/patología , Sinaptosomas/metabolismo , Sinaptosomas/patología
6.
Int Rev Cell Mol Biol ; 315: 23-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25708461

RESUMEN

Spatiotemporal localization of signals is a fundamental feature impacting cell survival and proper function. The cell needs to respond in an accurate manner in both space and time to both intra- and intercellular environment cues. The regulation of this comprehensive process involves the cytoskeleton and the trafficking machinery, as well as local protein synthesis and ligand-receptor mechanisms. Alterations in such mechanisms can lead to cell dysfunction and disease. Motor neurons that can extend over tens of centimeters are a classic example for the importance of such events. Changes in spatiotemporal localization mechanisms are thought to play a role in motor neuron degeneration that occurs in amyotrophic lateral sclerosis (ALS). In this review we will discuss these mechanisms and argue that possible misregulated factors can lead to motor neuron degeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Precursor de Proteína beta-Amiloide/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Transporte Axonal , Humanos , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Factores de Tiempo
7.
PLoS Pathog ; 10(8): e1004348, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25165859

RESUMEN

Rabies virus (RABV) is a neurotropic virus that depends on long distance axonal transport in order to reach the central nervous system (CNS). The strategy RABV uses to hijack the cellular transport machinery is still not clear. It is thought that RABV interacts with membrane receptors in order to internalize and exploit the endosomal trafficking pathway, yet this has never been demonstrated directly. The p75 Nerve Growth Factor (NGF) receptor (p75NTR) binds RABV Glycoprotein (RABV-G) with high affinity. However, as p75NTR is not essential for RABV infection, the specific role of this interaction remains in question. Here we used live cell imaging to track RABV entry at nerve terminals and studied its retrograde transport along the axon with and without the p75NTR receptor. First, we found that NGF, an endogenous p75NTR ligand, and RABV, are localized in corresponding domains along nerve tips. RABV and NGF were internalized at similar time frames, suggesting comparable entry machineries. Next, we demonstrated that RABV could internalize together with p75NTR. Characterizing RABV retrograde movement along the axon, we showed the virus is transported in acidic compartments, mostly with p75NTR. Interestingly, RABV is transported faster than NGF, suggesting that RABV not only hijacks the transport machinery but can also manipulate it. Co-transport of RABV and NGF identified two modes of transport, slow and fast, that may represent a differential control of the trafficking machinery by RABV. Finally, we determined that p75NTR-dependent transport of RABV is faster and more directed than p75NTR-independent RABV transport. This fast route to the neuronal cell body is characterized by both an increase in instantaneous velocities and fewer, shorter stops en route. Hence, RABV may employ p75NTR-dependent transport as a fast mechanism to facilitate movement to the CNS.


Asunto(s)
Transporte Axonal/fisiología , Axones/virología , Virus de la Rabia/patogenicidad , Rabia/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Ratones Endogámicos ICR , Técnicas Analíticas Microfluídicas , Rabia/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...