Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 341: 140062, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689155

RESUMEN

Mercury is a toxic environmental element, so it was necessary to prepare a new, highly efficient, cheap sorbent to remove it. A mesoporous thioacetamide/chitosan (MTA/CS) was manufactured via a simplistic strategy; the chitin deacetylation to gain chitosan (CS) and the addition of thioacetamide. The as-prepared MTA/CS was characterized using X-ray diffraction, EDX, SEM, FTIR, and BET surface analysis. According to the findings, the MTA/CS was effectively synthesized. The removal behaviors of Hg2+ onto MTA/CS composite were inspected, which suggested that the MTA/CS composite exhibited great sorption properties for Hg2+ in liquid solutions. The maximal Hg2+ sorption capacity was 195 mg/g. The effects of temperature, Hg2+ concentration, contacting time, and MTA/CS concentration on sorption were analyzed. The 2nd-order model and Langmuir isotherm were suitable for the physicochemical adsorption processes. Thermodynamic analysis showed that the Hg2+ adsorption process onto the MTA/CS composite is exothermic and occurred spontaneously. The desorption condition of Hg2+ from its loaded MTA/CS was also gained. Likewise, the MTA/CS sorbent was undoubtedly regenerated by 0.8 M NaNO3 80 min contacting and 1:50 S:L ratio. The versatility and durability of MTA/CS sorbent were investigated via nine sorption-extraction cycles. The optimum parameters were applied to wastewater. Based on the result, the as-prepared MTA/CS might be a potential sorbent for removing Hg2+ from liquid solutions.


Asunto(s)
Quitosano , Mercurio , Aguas Residuales , Tioacetamida , Quitina
2.
Nanomaterials (Basel) ; 12(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364642

RESUMEN

A new nano-silica/chitosan (SiO2/CS) sorbent was created using a wet process to eliminate uranium(VI) from its solution. Measurements using BET, XRD, EDX, SEM, and FTIR were utilized to analyze the production of SiO2/CS. The adsorption progressions were carried out by pH, SiO2/CS dose, temperature, sorbing time, and U(VI) concentration measurements. The optimal condition for U(VI) sorption (165 mg/g) was found to be pH 3.5, 60 mg SiO2/CS, for 50 min of sorbing time, and 200 mg/L U(VI). Both the second-order sorption kinetics and Langmuir adsorption model were observed to be obeyed by the ability of SiO2/CS to eradicate U(VI). Thermodynamically, the sorption strategy was a spontaneous reaction and exothermic. According to the findings, SiO2/CS had the potential to serve as an effectual sorbent for U(VI) displacement.

3.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955812

RESUMEN

Spent Ni-Cd batteries are now considered an important source for many valuable metals. The recovery of cadmium, cobalt, and nickel from spent Ni-Cd Batteries has been performed in this study. The optimum leaching process was achieved using 20% H2SO4, solid/liquid (S/L) 1/5 at 80 °C for 6 h. The leaching efficiency of Fe, Cd, and Co was nearly 100%, whereas the leaching efficiency of Ni was 95%. The recovery of the concerned elements was attained using successive different separation techniques. Cd(II) ions were extracted by a solvent, namely, Adogen® 464, and precipitated as CdS with 0.5% Na2S solution at pH of 1.25 and room temperature. The extraction process corresponded to pseudo-2nd-order. The prepared PTU-MS silica was applied for adsorption of Co(II) ions from aqueous solution, while the desorption process was performed using 0.3 M H2SO4. Cobalt was precipitated at pH 9.0 as Co(OH)2 using NH4OH. The kinetic and thermodynamic parameters were also investigated. Nickel was directly precipitated at pH 8.25 using a 10% NaOH solution at ambient temperature. FTIR, SEM, and EDX confirm the structure of the products.


Asunto(s)
Cadmio , Níquel , Cadmio/química , Cobalto , Suministros de Energía Eléctrica , Níquel/química , Dióxido de Silicio
4.
Polymers (Basel) ; 14(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566857

RESUMEN

A new synthetic chelating N-hydroxy-N-trioctyl iminophosphorane (HTIP) was prepared through the reaction of trioctylphosphine oxide (TOPO) with N-hydroxylamine hydrochloride in the presence of a Lewis acid (AlCl3). Specifications for the HTIP chelating ligand were successfully determined using many analytical techniques, 13C-NMR, 1H-NMR, FTIR, EDX, and GC-MS analyses, which assured a reasonable synthesis of the HTIP ligand. The ability of HTIP to retain U(VI) ions was investigated. The optimum experimental factors, pH value, experimental time, initial U(VI) ion concentration, HTIP dosage, ambient temperature, and eluents, were attained with solvent extraction techniques. The utmost retention capacity of HTIP/CHCl3 was 247.5 mg/g; it was achieved at pH = 3.0, 25 °C, with 30 min of shaking and 0.99 × 10-3 mol/L. From the stoichiometric calculations, approximately 1.5 hydrogen atoms are released during the extraction at pH 3.0, and 4.0 moles of HTIP ligand were responsible for chelation of one mole of uranyl ions. According to kinetic studies, the pseudo-first order model accurately predicted the kinetics of U(VI) extraction by HTIP ligand with a retention power of 245.47 mg/g. The thermodynamic parameters ΔS°, ΔH°, and ΔG° were also calculated; the extraction process was predicted as an exothermic, spontaneous, and advantageous extraction at low temperatures. As the temperature increased, the value of ∆G° increased. The elution of uranium ions from the loaded HTIP/CHCl3 was achieved using 2.0 mol of H2SO4 with a 99.0% efficiency rate. Finally, the extended variables were used to obtain a uranium concentrate (Na2U2O7, Y.C) with a uranium grade of 69.93% and purity of 93.24%.

5.
Polymers (Basel) ; 14(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35267777

RESUMEN

A new sorbent cetylpyridinium bromide/polyvinylchloride (CPB/PVC) was prepared and tested to extract rare earth elements (REEs) from their chloride solutions. It was identified by FTIR, TGA, SEM, EDX, and XRD. The impact of various factors such as pH, RE ion initial concentration, contacting time, and dose amount via sorption process was inspected. The optimum pH was 6.0, and the equilibrium contact time was reached at 60 min at 25 °C. The prepared adsorbent (CPB/PVC) uptake capacity was 182.6 mg/g. The adsorption of RE ions onto the CPB/PVC sorbent was found to fit the Langmuir isotherm as well as pseudo-second-order models well. In addition, the thermodynamic parameters of RE ion sorption were found to be exothermic and spontaneous. The desorption of RE ions from the loaded CPB/PVC sorbent was investigated. It was observed that the optimum desorption was achieved at 1.0 M HCl for 60 min contact time at ambient room temperature and a 1:60 solid: liquid phase ratio (S:L). As a result, the prepared CPB/PVC sorbent was recognized as a competitor sorbent for REEs.

6.
Materials (Basel) ; 15(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35161155

RESUMEN

This study presents the first application of sodium diethyldithiocarbamate/polyvinyl chloride (DdTC/PVC) as a novel adsorbent for rare earth element (REE) sorption from leach liquors. DdTC/PVC has higher adsorption properties than other sorbents, the synthesis of DdTC/PVC is more accessible than other resins, and it is considered a more affordable sorbent. The three-liquid-phase extraction technique (TLPE) was applied to separate REEs into light, middle, and heavy rare earth elements as groups. The TLPE is an excellent achievable technique in the separation of REEs. DdTC/PVC was prepared as a sorbent to sorb rare-earth ions in chloride solution. It was described by XRD, SEM, TGA, and FTIR. The factors pH, initial rare-earth ion concentration, contact time, and DdTC/PVC dose were also analyzed. The ideal pH was 5.5, and the ideal equilibration time was found to be 45 min. The rare-earth ion uptake on DdTC/PVC was 156.2 mg/g. The rare-earth ion sorption on DdTC/PVC was fitted to Langmuir and pseudo-2nd-order models. The rare-earth ions' thermodynamic adsorption was spontaneous and exothermic. In addition, rare-earth ion desorption from the loaded DdTC/PVC was scrutinized using 1 M HCl, 45 min time of contact, and a 1:60 S:L phase ratio. The obtained rare earth oxalate concentrate was utilized after dissolving it in HCl to extract and separate the RE ions into three groups-light (La, Ce, Nd, and Sm), middle (Gd, Ho, and Er), and heavy (Yb, Lu, and Y)-via three-liquid-phase extraction (TLPE). This technique is simple and suitable for extracting REEs.

7.
J Colloid Interface Sci ; 604: 61-79, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34265693

RESUMEN

This study aimed to develop a highly selective extraction protocol for gold (AuIII) ions from electronic urban waste (EUW) using simple, low-cost Inorganic-organic mesoporous hybrid segregators. The unique features of mesoporous hybrid segregator architectures are of particular to ensure effective adsorption system in terms of selective and sensitive recovery of AuIII ions from EUW. The segregator platform featured 3D micrometric, mesocage double-serrated plant-leaf-like γ-Al2O3 sheets with hierarchy surfaces containing tri-modal mesopores interiorly and uniformly arranged toothed edges of ~20-40 and ~15 nm groove width and depth at the exterior surfaces, respectively. Rational incorporation of actively organic chelates into hierarchical γ-Al2O3 sheet platforms leads to the production of a couple of selective segregators 1 and 2 (namely, SC1 and SC2) for AuIII ions at specific conditions by applying batch and fixed-bed columnar techniques. The mesocage SC segregators offer a selective extraction approach of AuIII ions from mixed element contents released from a computer motherboard (CMB). Our finding indicated that the textural and hierarchal features of the mesocage SC segregators played key roles in the selective adsorption/recovery of AuIII ions at pH 2-2.5 with high capacity (136-141 mg/g range) and effective reusability ≫10 consecutive cycles. In general, the developed SCs could be utilized as a real extractor of AuIII recovery from spent CMBs.


Asunto(s)
Quelantes , Oro , Adsorción , Membrana Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA