Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639105

RESUMEN

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Proteína con Dedos de Zinc GLI1 , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Ratones , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Endogámicos C57BL , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratones Transgénicos , Masculino , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología
2.
Am J Respir Crit Care Med ; 208(8): 879-895, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37676930

RESUMEN

Rationale: Immune dysregulation is a common feature of pulmonary arterial hypertension (PAH). Histone deacetylase (HDAC)-dependent transcriptional reprogramming epigenetically modulates immune homeostasis and is a novel disease-oriented approach in modern times. Objectives: To identify a novel functional link between HDAC and regulatory T cells (Tregs) in PAH, aiming to establish disease-modified biomarkers and therapeutic targets. Methods: Peripheral blood mononuclear cells were isolated from patients with idiopathic PAH (IPAH) and rodent models of pulmonary hypertension (PH): monocrotaline rats, Sugen5416-hypoxia rats, and Treg-depleted mice. HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to examine the immune modulatory effects in vivo, ex vivo, and in vitro. Measurements and Main Results: Increased HDAC expression was associated with reduced Foxp3+ Tregs and increased PD-1 (programmed cell death-1) signaling in peripheral blood mononuclear cells from patients with IPAH. SAHA differentially modified a cluster of epigenetic-sensitive genes and induced Foxp3+ Treg conversion in IPAH T cells. Rodent models recapitulated these epigenetic aberrations and T-cell dysfunction. SAHA attenuated PH phenotypes and restored FOXP3 transcription and Tregs in PH rats; interestingly, the effects were more profound in female rats. Selective depletion of CD25+ Tregs in Sugen5416-hypoxia mice neutralized the effects of SAHA. Furthermore, SAHA inhibited endothelial cytokine/chemokine release upon stimulation and subsequent immune chemotaxis. Conclusions: Our results indicated HDAC aberration was associated with Foxp3+ Treg deficiency and demonstrated an epigenetic-mediated mechanism underlying immune dysfunction in PAH. Restoration of Foxp3+ Tregs by HDAC inhibitors is a promising approach to resolve pulmonary vascular pathology, highlighting the potential benefit of developing epigenetic therapies for PAH.

3.
Cancer Res ; 83(14): 2345-2357, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37205635

RESUMEN

Tumor-associated macrophages (TAM), including antitumor M1-like TAMs and protumor M2-like TAMs, are transcriptionally dynamic innate immune cells with diverse roles in lung cancer development. Epigenetic regulators are key in controlling macrophage fate in the heterogeneous tumor microenvironment. Here, we demonstrate that the spatial proximity of HDAC2-overexpressing M2-like TAMs to tumor cells significantly correlates with poor overall survival of lung cancer patients. Suppression of HDAC2 in TAMs altered macrophage phenotype, migration, and signaling pathways related to interleukins, chemokines, cytokines, and T-cell activation. In coculture systems of TAMs and cancer cells, suppressing HDAC2 in TAMs resulted in reduced proliferation and migration, increased apoptosis of cancer cell lines and primary lung cancer cells, and attenuated endothelial cell tube formation. HDAC2 regulated the M2-like TAM phenotype via acetylation of histone H3 and transcription factor SP1. Myeloid cell-specific deletion of Hdac2 and pharmacologic inhibition of class I HDACs in four different murine lung cancer models induced the switch from M2-like to M1-like TAMs, altered infiltration of CD4+ and CD8+ T cells, and reduced tumor growth and angiogenesis. TAM-specific HDAC2 expression may provide a biomarker for lung cancer stratification and a target for developing improved therapeutic approaches. SIGNIFICANCE: HDAC2 inhibition reverses the protumor phenotype of macrophages mediated by epigenetic modulation induced by the HDAC2-SP1 axis, indicating a therapeutic option to modify the immunosuppressive tumor microenvironment.


Asunto(s)
Neoplasias Pulmonares , Macrófagos , Animales , Ratones , Macrófagos/metabolismo , Neoplasias Pulmonares/metabolismo , Línea Celular , Células Mieloides , Biomarcadores/metabolismo , Microambiente Tumoral , Línea Celular Tumoral
4.
Sci Transl Med ; 14(648): eabe5407, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35675437

RESUMEN

Phenotypic alterations in resident vascular cells contribute to the vascular remodeling process in diseases such as pulmonary (arterial) hypertension [P(A)H]. How the molecular interplay between transcriptional coactivators, transcription factors (TFs), and chromatin state alterations facilitate the maintenance of persistently activated cellular phenotypes that consequently aggravate vascular remodeling processes in PAH remains poorly explored. RNA sequencing (RNA-seq) in pulmonary artery fibroblasts (FBs) from adult human PAH and control lungs revealed 2460 differentially transcribed genes. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed extensive differential distribution of transcriptionally accessible chromatin signatures, with 4152 active enhancers altered in PAH-FBs. Integrative analysis of RNA-seq and ChIP-seq data revealed that the transcriptional signatures for lung morphogenesis were epigenetically derepressed in PAH-FBs, including coexpression of T-box TF 4 (TBX4), TBX5, and SRY-box TF 9 (SOX9), which are involved in the early stages of lung development. These TFs were expressed in mouse fetuses and then repressed postnatally but were maintained in persistent PH of the newborn and reexpressed in adult PAH. Silencing of TBX4, TBX5, SOX9, or E1A-associated protein P300 (EP300) by RNA interference or small-molecule compounds regressed PAH phenotypes and mesenchymal signatures in arterial FBs and smooth muscle cells. Pharmacological inhibition of the P300/CREB-binding protein complex reduced the remodeling of distal pulmonary vessels, improved hemodynamics, and reversed established PAH in three rodent models in vivo, as well as reduced vascular remodeling in precision-cut tissue slices from human PAH lungs ex vivo. Epigenetic reactivation of TFs associated with lung development therefore underlies PAH pathogenesis, offering therapeutic opportunities.


Asunto(s)
Hipertensión Pulmonar , Animales , Cromatina/metabolismo , Feto/metabolismo , Humanos , Pulmón/patología , Ratones , Arteria Pulmonar/patología , Interferencia de ARN , Factores de Transcripción/metabolismo , Remodelación Vascular/genética
5.
Br J Pharmacol ; 178(1): 54-71, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31749139

RESUMEN

Epigenetic mechanisms, including DNA methylation and histone post-translational modifications (PTMs), have been known to regulate chromatin structure and lineage-specific gene expression during cardiovascular development and disease. However, alterations in the landscape of histone PTMs and their contribution to the pathogenesis of incurable cardiovascular diseases such as pulmonary hypertension (PH) and associated right heart failure (RHF) remain largely unexplored. This review focusses on the studies in PH and RHF that investigated the gene families that write (histone acetyltransferases), read (bromodomain-containing proteins) or erase (histone deacetylases [HDACs] and sirtuins [SIRT]) acetyl moieties from the ε-amino group of lysine residues of histones and non-histone proteins. Analysis of cells and tissues isolated from the in vivo preclinical models of PH and human pulmonary arterial hypertension not only confirmed significant alterations in the expression levels of multiple HDACs, SIRT1, SIRT3 and BRD4 proteins but also demonstrated their strong association to proliferative, inflammatory and fibrotic phenotypes linked to the pathological vascular remodelling process. Due to the reversible nature of post-translational protein acetylation, the therapeutic efficacy of numerous small-molecule inhibitors (vorinostat, valproic acid, sodium butyrate, mocetinostat, entinostat, tubastatin A, apabetalone, JQ1 and resveratrol) have been evaluated in different preclinical models of cardiovascular disease, which revealed the promising therapeutic benefits of targeting histone acetylation pathways in the attenuation of cardiac hypertrophy, fibrosis, left heart dysfunction, PH and RHF. This review also emphasizes the need for deeper molecular insights into the contribution of epigenetic changes to PH pathogenesis and therapeutic evaluation of isoform-specific modulation in ex vivo and in vivo models of PH and RHF. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.


Asunto(s)
Histonas , Hipertensión Pulmonar , Acetilación , Proteínas de Ciclo Celular , Histonas/metabolismo , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertrofia Ventricular Derecha , Proteínas Nucleares , Procesamiento Proteico-Postraduccional , Factores de Transcripción
7.
Eur Respir J ; 57(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33184116

RESUMEN

The aim of our study was to analyse the protein expression of cartilage intermediate layer protein (CILP)1 in a mouse model of right ventricular (RV) pressure overload and to evaluate CILP1 as a biomarker of cardiac remodelling and maladaptive RV function in patients with pulmonary hypertension (PH).Pulmonary artery banding was performed in 14 mice; another nine mice underwent sham surgery. CILP1 protein expression was analysed in all hearts using Western blotting and immunostaining. CILP1 serum concentrations were measured in 161 patients (97 with adaptive and maladaptive RV pressure overload caused by PH; 25 with left ventricular (LV) hypertrophy; 20 with dilative cardiomyopathy (DCM); 19 controls without LV or RV abnormalities)In mice, the amount of RV CILP1 was markedly higher after banding than after sham. Control patients had lower CILP1 serum levels than all other groups (p<0.001). CILP1 concentrations were higher in PH patients with maladaptive RV function than those with adaptive RV function (p<0.001), LV pressure overload (p<0.001) and DCM (p=0.003). CILP1 showed good predictive power for maladaptive RV in receiver operating characteristic analysis (area under the curve (AUC) 0.79). There was no significant difference between the AUCs of CILP1 and N-terminal pro-brain natriuretic peptide (NT-proBNP) (AUC 0.82). High CILP1 (cut-off value for maladaptive RV of ≥4373 pg·mL-1) was associated with lower tricuspid annular plane excursion/pulmonary artery systolic pressure ratios (p<0.001) and higher NT-proBNP levels (p<0.001).CILP1 is a novel biomarker of RV and LV pathological remodelling that is associated with RV maladaptation and ventriculoarterial uncoupling in patients with PH.


Asunto(s)
Hipertensión Pulmonar , Disfunción Ventricular Derecha , Animales , Biomarcadores , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Ratones , Función Ventricular Derecha
8.
Glob Cardiol Sci Pract ; 2020(1): e202010, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33150154

RESUMEN

This article reviews the scientific reasons that support the intriguing vision of pulmonary hypertension (PH) as a disease with a cancer-like nature and to understand whether this point of view may have fruitful consequences for the overall management of PH. This review compares cancer and PH in view of Hanahan and Weinberg's principles (i.e., hallmarks of cancer) with an emphasis on hyperproliferative, metabolic, and immune/inflammatory aspects of the disease. In addition, this review provides a perspective on the role of transcription factors and chromatin and epigenetic aberrations, besides genetics, as "common driving mechanisms" of PH hallmarks and the foreseeable use of transcription factor/epigenome targeting as multitarget approach against the hallmarks of PH. Thus, recognition of the widespread applicability and analogy of these concepts will increasingly affect the development of new means of PH treatment.

9.
Sci Rep ; 10(1): 12864, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32733053

RESUMEN

Pharmacological modulation of class I histone deacetylases (HDAC) has been evaluated as a therapeutic strategy for pulmonary hypertension (PH) in experimental models of PH. However, information of their expression, regulation and transcriptional targets in human PH and the therapeutic potential of isoform-selective enzyme modulation are lacking. Comprehensive analysis of expression and regulation of class I HDACs (HDAC1, HDAC2, HDAC3 and HDAC8) was performed in cardiopulmonary tissues and adventitial fibroblasts isolated from pulmonary arteries (PAAF) of idiopathic pulmonary arterial hypertension (IPAH) patients and healthy donors. Cellular functions and transcriptional targets of HDAC enzymes were investigated. Therapeutic effects of pan-HDAC (Vorinostat), class-selective (VPA) and isoform-selective (CAY10398, Romidepsin, PCI34051) HDAC inhibitors were evaluated ex vivo (IPAH-PAAF, IPAH-PASMC) and in vivo (rat chronic hypoxia-induced PH and zebrafish angiogenesis). Our screening identifies dysregulation of class I HDAC isoforms in IPAH. Particularly, HDAC1 and HDAC8 were consistently increased in IPAH-PAs and IPAH-PAAFs, whereas HDAC2 and HDAC8 showed predominant localization with ACTA2-expressing cells in extensively remodeled IPAH-PAs. Hypoxia not only significantly modulated protein levels of deacetylase (HDAC8), but also significantly caused dynamic changes in the global histone lysine acetylation levels (H3K4ac, H3K9/K14ac and H3K27ac). Importantly, isoform-specific RNA-interference revealed that HDAC isoforms regulate distinct subset of transcriptome in IPAH-PAAFs. Reduced transcript levels of KLF2 in IPAH-PAAFs was augmented by HDAC8 siRNA and HDAC inhibitors, which also attenuated IPAH-associated hyperproliferation and apoptosis-resistance ex vivo, and mitigated chronic hypoxia-induced established PH in vivo, at variable degree. Class I HDAC isoforms are significantly dysregulated in human PAH. Isoform-selective HDAC inhibition is a viable approach to circumvent off-target effects.


Asunto(s)
Histona Desacetilasas/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Animales , Células Cultivadas , Depsipéptidos/química , Depsipéptidos/farmacología , Depsipéptidos/uso terapéutico , Histona Desacetilasas/química , Histona Desacetilasas/farmacología , Humanos , Técnicas In Vitro , Isoenzimas , Ratas , Relación Estructura-Actividad , Transcriptoma/efectos de los fármacos , Vorinostat/química , Vorinostat/farmacología , Vorinostat/uso terapéutico , Pez Cebra
10.
Eur Respir Rev ; 25(140): 135-40, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27246590

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe and progressive disease, characterised by high pulmonary artery pressure that usually culminates in right heart failure. Recent findings of alterations in the DNA methylation state of superoxide dismutase 2 and granulysin gene loci; histone H1 levels; aberrant expression levels of histone deacetylases and bromodomain-containing protein 4; and dysregulated microRNA networks together suggest the involvement of epigenetics in PAH pathogenesis. Thus, PAH pathogenesis evidently involves the interplay of a predisposed genetic background, epigenetic state and injurious events. Profiling the genome-wide alterations in the epigenetic mechanisms, such as DNA methylation or histone modification pattern in PAH vascular cells, may explain the great variability in susceptibility and disease severity that is frequently associated with pronounced remodelling and worse clinical outcome. Moreover, the influence of genetic predisposition and the acquisition of epigenetic alterations in response to environmental cues in PAH progression and establishment has largely been unexplored on a genome-wide scale. In order to gain insights into the molecular mechanisms leading to the development of PAH and to design novel therapeutic strategies, high-throughput approaches have to be adopted to facilitate systematic identification of the disease-specific networks using next-generation sequencing technologies, the application of these technologies in PAH has been relatively trivial to date.


Asunto(s)
Presión Arterial/genética , Ensamble y Desensamble de Cromatina , Metilación de ADN , Epigénesis Genética , Hipertensión Pulmonar/genética , Arteria Pulmonar/fisiopatología , Animales , Antihipertensivos/uso terapéutico , Presión Arterial/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Terapia Molecular Dirigida , Fenotipo , Arteria Pulmonar/efectos de los fármacos , Factores de Riesgo
11.
Pulm Circ ; 6(4): 448-464, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28090287

RESUMEN

Pulmonary hypertension (PH) is a complex and multifactorial disease involving genetic, epigenetic, and environmental factors. Numerous stimuli and pathological conditions facilitate severe vascular remodeling in PH by activation of a complex cascade of signaling pathways involving vascular cell proliferation, differentiation, and inflammation. Multiple signaling cascades modulate the activity of certain sequence-specific DNA-binding transcription factors (TFs) and coregulators that are critical for the transcriptional regulation of gene expression that facilitates PH-associated vascular cell phenotypes, as demonstrated by several studies summarized in this review. Past studies have largely focused on the role of the genetic component in the development of PH, while the presence of epigenetic alterations such as microRNAs, DNA methylation, histone levels, and histone deacetylases in PH is now also receiving increasing attention. Epigenetic regulation of chromatin structure is also recognized to influence gene expression in development or disease states. Therefore, a complete understanding of the mechanisms involved in altered gene expression in diseased cells is vital for the design of novel therapeutic strategies. Recent technological advances in DNA sequencing will provide a comprehensive improvement in our understanding of mechanisms involved in the development of PH. This review summarizes current concepts in TF and epigenetic control of cell phenotype in pulmonary vascular disease and discusses the current issues and possibilities in employing potential epigenetic or TF-based therapies for achieving complete reversal of PH.

12.
Am J Respir Cell Mol Biol ; 55(1): 47-57, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26699943

RESUMEN

Remodeling of the distal pulmonary artery wall is a characteristic feature of pulmonary hypertension (PH). In hypoxic PH, the most substantial pathologic changes occur in the adventitia. Here, there is marked fibroblast proliferation and profound macrophage accumulation. These PH fibroblasts (PH-Fibs) maintain a hyperproliferative, apoptotic-resistant, and proinflammatory phenotype in ex vivo culture. Considering that a similar phenotype is observed in cancer cells, where it has been associated, at least in part, with specific alterations in mitochondrial metabolism, we sought to define the state of mitochondrial metabolism in PH-Fibs. In PH-Fibs, pyruvate dehydrogenase was markedly inhibited, resulting in metabolism of pyruvate to lactate, thus consistent with a Warburg-like phenotype. In addition, mitochondrial bioenergetics were suppressed and mitochondrial fragmentation was increased in PH-Fibs. Most importantly, complex I activity was substantially decreased, which was associated with down-regulation of the accessory subunit nicotinamide adenine dinucleotide reduced dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Owing to less-efficient ATP synthesis, mitochondria were hyperpolarized and mitochondrial superoxide production was increased. This pro-oxidative status was further augmented by simultaneous induction of cytosolic nicotinamide adenine dinucleotide phosphate reduced oxidase 4. Although acute and chronic exposure to hypoxia of adventitial fibroblasts from healthy control vessels induced increased glycolysis, it did not induce complex I deficiency as observed in PH-Fibs. This suggests that hypoxia alone is insufficient to induce NDUFS4 down-regulation and constitutive abnormalities in complex I. In conclusion, our study provides evidence that, in the pathogenesis of vascular remodeling in PH, alterations in fibroblast mitochondrial metabolism drive distinct changes in cellular behavior, which potentially occur independently of hypoxia.


Asunto(s)
Reprogramación Celular , Fibroblastos/metabolismo , Hipertensión Pulmonar/metabolismo , Mitocondrias/metabolismo , Animales , Bovinos , Respiración de la Célula , Enfermedad Crónica , Ciclo del Ácido Cítrico , Regulación hacia Abajo , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Glucólisis , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Hipoxia/patología , Pulmón/patología , Macrófagos/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Comunicación Paracrina , Fenotipo , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Superóxidos/metabolismo
13.
Eur Respir J ; 40(3): 766-82, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22523364

RESUMEN

Pulmonary hypertension (PH) is a severe and progressive disease characterised by high pulmonary artery pressure, usually culminating in right heart failure. Current therapeutic approaches in PH largely provide symptomatic relief while the prognosis rate is lower due to the lack of specific molecular targets and the involvement of several factors in the development of PH. Numerous studies have suggested a crucial role of matrix metalloproteinase (MMP) axis during development and disease states, specifically with regard to extracellular matrix remodelling and vascular homeostasis. Increased MMP activity has been demonstrated in experimental animal models of PH, and MMP inhibition has been shown to either attenuate or enhance vascular remodelling. Moreover, several studies emphasise that restoration of deregulated MMPs to physiological MMP/tissue inhibitor of MMPs ratios would potentiate reverse remodelling in PH. This article will highlight the pathophysiological role of MMPs in vascular remodelling and the establishment of PH. In particular, we will focus on the MMP expression and regulation in pulmonary vasculature and pulmonary vascular remodelling. We will also provide an overview of recent clinical and experimental findings and their impact on achieving maximum reversal of PH, as well as current issues and future perspectives.


Asunto(s)
Hipertensión Pulmonar/enzimología , Metaloproteinasas de la Matriz/metabolismo , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Animales , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Metaloproteinasas de la Matriz/análisis , Ratones , Monocrotalina/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...