Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289557

RESUMEN

PD-1 is a key negative regulator of CD8+ T cell activation and is highly expressed by exhausted T cells in cancer and chronic viral infection. Although PD-1 blockade can improve viral and tumor control, physiological PD-1 expression prevents immunopathology and improves memory formation. The mechanisms driving high PD-1 expression in exhaustion are not well understood and could be critical to disentangling its beneficial and detrimental effects. Here, we functionally interrogated the epigenetic regulation of PD-1 using a mouse model with deletion of an exhaustion-specific PD-1 enhancer. Enhancer deletion exclusively alters PD-1 expression in CD8+ T cells in chronic infection, creating a 'sweet spot' of intermediate expression where T cell function is optimized compared to wild-type and Pdcd1-knockout cells. This permits improved control of chronic infection without additional immunopathology. Together, these results demonstrate that tuning PD-1 via epigenetic editing can reduce CD8+ T cell dysfunction while avoiding excess immunopathology.

2.
Cancer Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074365

RESUMEN

Aging is one of the biggest risk factors for cancer development. Over 85% of all cancers occur in individuals aged over 55 years, often accompanied by age-associated immune defects. Previous studies on the tumor microenvironment (TME) during aging have identified several factors, such as the roles of fibroblasts, immunosuppression, and metastasis. However, the aging-associated defects in anti-tumor immunity, particularly regarding T cells, remain underexplored. Recent findings by Zhivaki and colleagues suggest that age-related immune defects affecting anti-tumor responses involve reduced levels of CD8+ T cells and compromised dendritic cell (DC) functions such as antigen presentation and migration. Their study demonstrates that a hyperactive DC vaccine can restore DC functions in older mice. Furthermore, these hyperactive DCs, characterized by increased IL-1ß production and better migratory capability to the lymph node, promote the development of cytolytic CD4+ T cells exhibiting Th1-like phenotypes. This research reveals mechanisms underlying the response to hyperactive DC vaccines in older mice and highlights the critical role of cytolytic CD4+ T cells as substitutes for CD8+ T cells in driving anti-tumor immunity and achieving long-term tumor control in older mice.

3.
Nat Immunol ; 25(6): 1033-1045, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745085

RESUMEN

The etiology and effect of age-related immune dysfunction in cancer is not completely understood. Here we show that limited priming of CD8+ T cells in the aged tumor microenvironment (TME) outweighs cell-intrinsic defects in limiting tumor control. Increased tumor growth in aging is associated with reduced CD8+ T cell infiltration and function. Transfer of T cells from young mice does not restore tumor control in aged mice owing to rapid induction of T cell dysfunction. Cell-extrinsic signals in the aged TME drive a tumor-infiltrating age-associated dysfunctional (TTAD) cell state that is functionally, transcriptionally and epigenetically distinct from canonical T cell exhaustion. Altered natural killer cell-dendritic cell-CD8+ T cell cross-talk in aged tumors impairs T cell priming by conventional type 1 dendritic cells and promotes TTAD cell formation. Aged mice are thereby unable to benefit from therapeutic tumor vaccination. Critically, myeloid-targeted therapy to reinvigorate conventional type 1 dendritic cells can improve tumor control and restore CD8+ T cell immunity in aging.


Asunto(s)
Envejecimiento , Linfocitos T CD8-positivos , Células Dendríticas , Microambiente Tumoral , Animales , Microambiente Tumoral/inmunología , Linfocitos T CD8-positivos/inmunología , Ratones , Células Dendríticas/inmunología , Envejecimiento/inmunología , Ratones Endogámicos C57BL , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Humanos , Neoplasias/inmunología , Línea Celular Tumoral , Femenino , Activación de Linfocitos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...