Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Mol Psychiatry ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003412

RESUMEN

The single nucleotide polymorphism rs13166360, causing a substitution of valine (Val) 147 to leucine (Leu) in the adenylyl cyclase 2 (ADCY2), has previously been associated with bipolar disorder (BD). Here we show that the disease-associated ADCY2 missense mutation diminishes the enzyme´s capacity to generate the second messenger 3',5'-cylic adenosine monophosphate (cAMP) by altering its subcellular localization. We established mice specifically carrying the Val to Leu substitution using CRISPR/Cas9-based gene editing. Mice homozygous for the Leu variant display symptoms of a mania-like state accompanied by cognitive impairments. Mutant animals show additional characteristic signs of rodent mania models, i.e., they are hypersensitive to amphetamine, the observed mania-like behaviors are responsive to lithium treatment and the Val to Leu substitution results in a shifted excitatory/inhibitory synaptic balance towards more excitation. Exposure to chronic social defeat stress switches homozygous Leu variant carriers from a mania- to a depressive-like state, a transition which is reminiscent of the alternations characterizing the symptomatology in BD patients. Single-cell RNA-seq (scRNA-seq) revealed widespread Adcy2 mRNA expression in numerous hippocampal cell types. Differentially expressed genes particularly identified from glutamatergic CA1 neurons point towards ADCY2 variant-dependent alterations in multiple biological processes including cAMP-related signaling pathways. These results validate ADCY2 as a BD risk gene, provide insights into underlying disease mechanisms, and potentially open novel avenues for therapeutic intervention strategies.

2.
Curr Opin Neurobiol ; 86: 102879, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692167

RESUMEN

Although aggression is associated with several psychiatric disorders, there is no effective treatment nor a rigorous definition for "pathological aggression". Mice make a valuable model for studying aggression. They have a dynamic social structure that depends on the habitat and includes reciprocal interactions between the mice's aggression levels, social dominance hierarchy (SDH), and resource allocation. Nevertheless, the classical behavioral tests for territorial aggression and SDH in mice are reductive and have limited ethological and translational relevance. Recent work has explored the use of semi-natural environments to simultaneously study dominance-related behaviors, resource allocation, and aggressive behavior. Semi-natural setups allow experimental control of the environment combined with manipulations of neural activity. We argue that these setups can help bridge the translational gap in aggression research toward discovering neuronal mechanisms underlying maladaptive aggression.


Asunto(s)
Agresión , Predominio Social , Animales , Agresión/fisiología , Ratones , Conducta Animal/fisiología , Humanos , Etología/métodos
3.
J Neurosci ; 44(15)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38418220

RESUMEN

The conformational state of DNA fine-tunes the transcriptional rate and abundance of RNA. Here, we report that G-quadruplex DNA (G4-DNA) accumulates in neurons, in an experience-dependent manner, and that this is required for the transient silencing and activation of genes that are critically involved in learning and memory in male C57/BL6 mice. In addition, site-specific resolution of G4-DNA by dCas9-mediated deposition of the helicase DHX36 impairs fear extinction memory. Dynamic DNA structure states therefore represent a key molecular mechanism underlying memory consolidation.One-Sentence Summary: G4-DNA is a molecular switch that enables the temporal regulation of the gene expression underlying the formation of fear extinction memory.


Asunto(s)
G-Cuádruplex , Masculino , Animales , Ratones , Extinción Psicológica , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Miedo , ADN/metabolismo
4.
Lancet Neurol ; 23(1): 28-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101894
5.
Sci Adv ; 9(48): eadj3793, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039370

RESUMEN

Adverse events in early life can modulate the response to additional stressors later in life and increase the risk of developing psychiatric disorders. The underlying molecular mechanisms responsible for these effects remain unclear. Here, we uncover that early life adversity (ELA) in mice leads to social subordination. Using single-cell RNA sequencing (scRNA-seq), we identified cell type-specific changes in the transcriptional state of glutamatergic and GABAergic neurons in the ventral hippocampus of ELA mice after exposure to acute social stress in adulthood. These findings were reflected by an alteration in excitatory and inhibitory synaptic transmission induced by ELA in response to acute social stress. Finally, enhancing the inhibitory network function through transient diazepam treatment during an early developmental sensitive period reversed the ELA-induced social subordination. Collectively, this study significantly advances our understanding of the molecular, physiological, and behavioral alterations induced by ELA, uncovering a previously unknown cell type-specific vulnerability to ELA.


Asunto(s)
Experiencias Adversas de la Infancia , Trastornos Mentales , Humanos , Ratones , Animales , Transcriptoma , Estrés Psicológico/genética , Estrés Psicológico/psicología , Hipocampo
6.
Elife ; 122023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432876

RESUMEN

Pharmacotherapies for the treatment of major depressive disorder were serendipitously discovered almost seven decades ago. From this discovery, scientists pinpointed the monoaminergic system as the primary target associated with symptom alleviation. As a result, most antidepressants have been engineered to act on the monoaminergic system more selectively, primarily on serotonin, in an effort to increase treatment response and reduce unfavorable side effects. However, slow and inconsistent clinical responses continue to be observed with these available treatments. Recent findings point to the glutamatergic system as a target for rapid acting antidepressants. Investigating different cohorts of depressed individuals treated with serotonergic and other monoaminergic antidepressants, we found that the expression of a small nucleolar RNA, SNORD90, was elevated following treatment response. When we increased Snord90 levels in the mouse anterior cingulate cortex (ACC), a brain region regulating mood responses, we observed antidepressive-like behaviors. We identified neuregulin 3 (NRG3) as one of the targets of SNORD90, which we show is regulated through the accumulation of N6-methyladenosine modifications leading to YTHDF2-mediated RNA decay. We further demonstrate that a decrease in NRG3 expression resulted in increased glutamatergic release in the mouse ACC. These findings support a molecular link between monoaminergic antidepressant treatment and glutamatergic neurotransmission.


Asunto(s)
Trastorno Depresivo Mayor , Animales , Ratones , Afecto , Antidepresivos/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Transducción de Señal , Transmisión Sináptica
7.
Cell Rep ; 42(8): 112874, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516966

RESUMEN

Stress-related psychiatric disorders and the stress system show prominent differences between males and females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signatures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress response, in male and female mice. Further, we show that a history of chronic mild stress alters these signatures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects. This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of individual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on the mechanisms of the stress response.


Asunto(s)
Caracteres Sexuales , Estrés Psicológico , Ratones , Masculino , Femenino , Animales , Estrés Psicológico/metabolismo , Hipotálamo
8.
Mol Psychiatry ; 28(3): 993-1003, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36635579

RESUMEN

Mental disorders are a significant cause of disability worldwide. They profoundly affect individuals' well-being and impose a substantial financial burden on societies and governments. However, despite decades of extensive research, the effectiveness of current therapeutics for mental disorders is often not satisfactory or well tolerated by the patient. Moreover, most novel therapeutic candidates fail in clinical testing during the most expensive phases (II and III), which results in the withdrawal of pharma companies from investing in the field. It also brings into question the effectiveness of using animal models in preclinical studies to discover new therapeutic agents and predict their potential for treating mental illnesses in humans. Here, we focus on rodents as animal models and propose that they are essential for preclinical investigations of candidate therapeutic agents' mechanisms of action and for testing their safety and efficiency. Nevertheless, we argue that there is a need for a paradigm shift in the methodologies used to measure animal behavior in laboratory settings. Specifically, behavioral readouts obtained from short, highly controlled tests in impoverished environments and social contexts as proxies for complex human behavioral disorders might be of limited face validity. Conversely, animal models that are monitored in more naturalistic environments over long periods display complex and ethologically relevant behaviors that reflect evolutionarily conserved endophenotypes of translational value. We present how semi-natural setups in which groups of mice are individually tagged, and video recorded continuously can be attainable and affordable. Moreover, novel open-source machine-learning techniques for pose estimation enable continuous and automatic tracking of individual body parts in groups of rodents over long periods. The trajectories of each individual animal can further be subjected to supervised machine learning algorithms for automatic detection of specific behaviors (e.g., chasing, biting, or fleeing) or unsupervised automatic detection of behavioral motifs (e.g., stereotypical movements that might be harder to name or label manually). Compared to studies of animals in the wild, semi-natural environments are more compatible with neural and genetic manipulation techniques. As such, they can be used to study the neurobiological mechanisms underlying naturalistic behavior. Hence, we suggest that such a paradigm possesses the best out of classical ethology and the reductive behaviorist approach and may provide a breakthrough in discovering new efficient therapies for mental illnesses.


Asunto(s)
Trastornos Mentales , Psiquiatría , Humanos , Ratones , Animales , Conducta Animal , Modelos Animales , Algoritmos
9.
Transl Psychiatry ; 12(1): 381, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096987

RESUMEN

Stress exposure impairs brain structure and function, resulting in cognitive deficits and increased risk for psychiatric disorders such as depression, schizophrenia, anxiety and post-traumatic stress disorder. In particular, stress exposure affects function and structure of hippocampal CA1 leading to impairments in episodic memory. Here, we applied longitudinal deep-brain optical imaging to investigate the link between changes in activity patterns and structural plasticity of dorsal CA1 pyramidal neurons and hippocampal-dependent learning and memory in mice exposed to stress. We found that several days of repeated stress led to a substantial increase in neuronal activity followed by disruption of the temporal structure of this activity and spatial coding. We then tracked dynamics of structural excitatory connectivity as a potential underlying cause of the changes in activity induced by repeated stress. We thus discovered that exposure to repeated stress leads to an immediate decrease in spinogenesis followed by decrease in spine stability. By comparison, acute stress led to stabilization of the spines born in temporal proximity to the stressful event. Importantly, the temporal relationship between changes in activity levels, structural connectivity and activity patterns, suggests that loss of structural connectivity mediates the transition between increased activity and impairment of temporal organization and spatial information content in dorsal CA1 upon repeated stress exposure.


Asunto(s)
Hipocampo , Aprendizaje , Animales , Ansiedad/etiología , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología , Humanos , Ratones , Neuronas , Células Piramidales
10.
iScience ; 25(7): 104657, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35845167

RESUMEN

Although mice mostly communicate in the ultrasonic range, they also emit audible calls. We demonstrate that mice selectively bred for high anxiety-related behavior (HAB) have a high disposition for emitting sonic calls when caught by the tail. The vocalization was unrelated to pain but sensitive to anxiolytics. As revealed by manganese-enhanced MRI, HAB mice displayed an increased tonic activity of the periaqueductal gray (PAG). Selective inhibition of the dorsolateral PAG not only reduced anxiety-like behavior but also completely abolished sonic vocalization. Calls were emitted at a fundamental frequency of 3.8 kHz, which falls into the hearing range of numerous predators. Indeed, playback of sonic vocalization attracted rats if associated with a stimulus mouse. If played back to HAB mice, sonic calls were repellent in the absence of a conspecific but attractive in their presence. Our data demonstrate that sonic vocalization attracts both predators and conspecifics depending on the context.

11.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35887024

RESUMEN

MiRNAs are important epigenetic players with tissue- and disease-specific effects. In this study, our aim was to investigate the putative differential expression of miRNAs in adrenal tissues from different forms of Cushing's syndrome (CS). For this, miRNA-based next-generation sequencing was performed in adrenal tissues taken from patients with ACTH-independent cortisol-producing adrenocortical adenomas (CPA), from patients with ACTH-dependent pituitary Cushing's disease (CD) after bilateral adrenalectomy, and from control subjects. A confirmatory QPCR was also performed in adrenals from patients with other CS subtypes, such as primary bilateral macronodular hyperplasia and ectopic CS. Sequencing revealed significant differences in the miRNA profiles of CD and CPA. QPCR revealed the upregulated expression of miR-1247-5p in CPA and PBMAH (log2 fold change > 2.5, p < 0.05). MiR-379-5p was found to be upregulated in PBMAH and CD (log2 fold change > 1.8, p < 0.05). Analyses of miR-1247-5p and miR-379-5p expression in the adrenals of mice which had been exposed to short-term ACTH stimulation showed no influence on the adrenal miRNA expression profiles. For miRNA-specific target prediction, RNA-seq data from the adrenals of CPA, PBMAH, and control samples were analyzed with different bioinformatic platforms. The analyses revealed that both miR-1247-5p and miR-379-5p target specific genes in the WNT signaling pathway. In conclusion, this study identified distinct adrenal miRNAs as being associated with CS subtypes.


Asunto(s)
Síndrome de Cushing , MicroARNs , Glándulas Suprarrenales/metabolismo , Adrenalectomía , Hormona Adrenocorticotrópica/metabolismo , Animales , Síndrome de Cushing/clasificación , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Humanos , Hidrocortisona/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/metabolismo
12.
Neuron ; 110(14): 2283-2298.e9, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35649415

RESUMEN

A single sub-anesthetic dose of ketamine produces a rapid and sustained antidepressant response, yet the molecular mechanisms responsible for this remain unclear. Here, we identified cell-type-specific transcriptional signatures associated with a sustained ketamine response in mice. Most interestingly, we identified the Kcnq2 gene as an important downstream regulator of ketamine action in glutamatergic neurons of the ventral hippocampus. We validated these findings through a series of complementary molecular, electrophysiological, cellular, pharmacological, behavioral, and functional experiments. We demonstrated that adjunctive treatment with retigabine, a KCNQ activator, augments ketamine's antidepressant-like effects in mice. Intriguingly, these effects are ketamine specific, as they do not modulate a response to classical antidepressants, such as escitalopram. These findings significantly advance our understanding of the mechanisms underlying the sustained antidepressant effects of ketamine, with important clinical implications.


Asunto(s)
Ketamina , Animales , Antidepresivos/farmacología , Hipocampo , Canal de Potasio KCNQ2/genética , Ketamina/farmacología , Ketamina/uso terapéutico , Ratones , Proteínas del Tejido Nervioso , Neuronas
13.
Brain Behav Immun ; 104: 31-38, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35470013

RESUMEN

BACKGROUND: Both the neutrophil/lymphocyte ratio (NLR) and the platelet/lymphocyte ratio (PLR) have been proposed as biomarkers of suicidal risk in adults with depression. We examined whether these ratios may be considered biomarkers for suicidal behavior in young patients with major depressive or anxiety disorders before treatment with selective serotonin reuptake inhibitors (SSRIs), or as biomarkers for the adverse event of SSRI-associated suicidality. METHODS: Children and adolescents meeting criteria for major depressive or anxiety disorder were recruited. Serum levels of three pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) were assessed; and NLR and PLR calculated, from blood samples collected at baseline and after 8 weeks treatment with SSRI. A Mann-Whitney test was performed to evaluate differences in NLR and PLR between children with and without a history of a suicide attempt prior to treatment. We compared hematological parameters before and after treatment, and between children who developed SSRI-associated suicidality versus children without treatment emergent suicidality. RESULTS: Among 91 children and adolescents (aged 13.9 ± 2.4 years), baseline NLR and PLR were significantly higher among those with a history of a suicide attempt versus those without such history. Statistically significant correlations were found for the suicide ideation subscale in the Columbia suicide severity rating scale with both baseline NLR and PLR. Baseline NLR and PLR were similar in children who did and did not develop SSRI-associated suicidality after 8 weeks. In the final logistic regression model (χ2 = 18.504, df = 4, p value = 0.001), after controlling for sex, depression severity and IL-6 levels, NLR was significantly associated with a past suicide attempt (ß = 1.247, p = 0.019; OR [95% CI] = 3.478 [1.230-9.841]), with a NLR cut-off value of = 1.76 (area under the curve = 0.75 (95% CI = 0.63-0.88, sensitivity = 73%, and specificity = 71%, p value = 0.003). CONCLUSIONS: High NLR and PLR values may be associated with suicidal behavior in depressed and anxious children and adolescents. NLR appears as a better predictor of suicide attempt than PLR, and thus may be a useful biomarker of suicidality in young patients with depression or anxiety.

14.
Sci Adv ; 8(10): eabi4797, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35263141

RESUMEN

The mediobasal hypothalamus (MBH) is the central region in the physiological response to metabolic stress. The FK506-binding protein 51 (FKBP51) is a major modulator of the stress response and has recently emerged as a scaffolder regulating metabolic and autophagy pathways. However, the detailed protein-protein interactions linking FKBP51 to autophagy upon metabolic challenges remain elusive. We performed mass spectrometry-based metabolomics of FKBP51 knockout (KO) cells revealing an increased amino acid and polyamine metabolism. We identified FKBP51 as a central nexus for the recruitment of the LKB1/AMPK complex to WIPI4 and TSC2 to WIPI3, thereby regulating the balance between autophagy and mTOR signaling in response to metabolic challenges. Furthermore, we demonstrated that MBH FKBP51 deletion strongly induces obesity, while its overexpression protects against high-fat diet (HFD)-induced obesity. Our study provides an important novel regulatory function of MBH FKBP51 within the stress-adapted autophagy response to metabolic challenges.


Asunto(s)
Hipotálamo , Proteínas de Unión a Tacrolimus , Autofagia , Dieta Alta en Grasa/efectos adversos , Humanos , Hipotálamo/metabolismo , Obesidad/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
15.
Psychoneuroendocrinology ; 138: 105670, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35091292

RESUMEN

Glucocorticoid (GC)-mediated negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis, the body's physiological stress response system, is tightly regulated and essential for appropriate termination of this hormonal cascade. Disturbed regulation and maladaptive response of this axis are fundamental components of multiple stress-induced psychiatric and metabolic diseases and aging. The co-chaperone FK506 binding protein 51 (FKBP51) is a negative regulator of the GC receptor (GR), is highly stress responsive, and its polymorphisms have been repeatedly associated with stress-related disorders and dysfunctions in humans and rodents. Proopiomelanocortin (Pomc)-expressing corticotropes in the anterior pituitary gland are one of the key cell populations of this closed-loop GC-dependent negative feedback regulation of the HPA axis in the periphery. However, the cell type-specific role of FKBP51 in anterior pituitary corticotrope POMC cells and its impact on age-related HPA axis disturbances are yet to be elucidated. Here, using a combination of endogenous knockout and viral rescue, we show that male mice lacking FKBP51 in Pomc-expressing cells exhibit enhanced GR-mediated negative feedback and are protected from age-related disruption of their diurnal corticosterone (CORT) rhythm. Our study highlights the complexity of tissue- and cell type-specific, but also cross-tissue effects of FKBP51 in the rodent stress response at different ages and extends our understanding of potential targets for pharmacological intervention in stress- and age-related disorders.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Proteínas de Unión a Tacrolimus , Animales , Corticosterona/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Proopiomelanocortina/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
16.
Eur J Neurosci ; 55(9-10): 2777-2793, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34587653

RESUMEN

Chronic stress creates an allostatic overload that may lead to mood disorders such as anxiety and depression. Modern causes of chronic stress in humans are mostly social in nature, relating to work and relationship stress. Research into neural and molecular mechanisms of vulnerability and resilience following chronic social stress (CSS) is ongoing and uses animal models to discover efficient prevention strategies and treatments. To date, most CSS studies have neglected the female sex and used male-focused aggression-based animal models such as chronic social defeat stress (CSDS). Accumulating evidence on sex differences suggests differences in the stress response, the prevalence of stress-related illness and in response to treatment, indicating that researchers should expand CSS investigation to include female-focused protocols alongside the popular CSDS protocols. Here, we describe a novel female mouse model of CSS and a parallel modified male mouse model of CSDS in C57BL/6 mice. These new models enable the investigation of vulnerability, coping and downstream effectors mediating short-term and long-term consequences of CSS in both sexes. Our data demonstrate differential effects on male and female mice during, soon after, and many weeks after CSS. Female mice are more prone to body weight loss during CSS and hyperactive anxious behaviour following CSS. Both sexes show reduced social interaction, but only stressed male mice show long-term changes in emotional memory and neuroendocrine function. We further discuss future avenues of research using these models to investigate mechanisms pertaining to sensitivity to CSS and treatment response profiles, in a sex-appropriate manner.


Asunto(s)
Ansiedad , Estrés Psicológico , Animales , Modelos Animales de Enfermedad , Emociones , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Conducta Social
17.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34872938

RESUMEN

The cochaperone FKBP51, encoded by the Fkbp5 gene, has been identified as central risk factor for anxiety-related disorders and stress system dysregulation. In the brain, the oval bed nucleus of the stria terminalis (ovBNST) has been implicated in stress-induced anxiety. However, the role of Fkbp5 in the ovBNST and its impact on anxiety-like behavior have remained unknown. Here, we show in mice that Fkbp5 in the ovBNST is reactive to acute stress and coexpressed with the stress-regulated neuropeptides Tac2 and Crh Subsequently, results obtained from viral-mediated manipulation indicate that Fkbp5 overexpression (OE) in the ovBNST results in an anxiolytic-like tendency regarding behavior and endocrinology, whereas a Fkbp5 knock-out (KO) exposed a clear anxiogenic phenotype, indicating that native ovBNST expression and regulation is necessary for normal anxiety-related behavior. Notably, our data suggests that a stress-induced increase of Fkbp5 in the ovBNST may in fact have a protective role, leading to a transient decrease in anxiety and suppression of a future stress-induced hypothalamic-pituitary-adrenal (HPA) axis activation. Together, our findings provide a first insight into the previously unknown relationship and effects of Fkbp5 and the ovBNST on anxiety-like behavior and HPA axis functioning.


Asunto(s)
Neuropéptidos , Núcleos Septales , Animales , Ansiedad , Sistema Hipotálamo-Hipofisario , Ratones , Sistema Hipófiso-Suprarrenal , Proteínas de Unión a Tacrolimus
18.
Genes Brain Behav ; 20(8): e12775, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672092

RESUMEN

The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.


Asunto(s)
Receptor Cannabinoide CB1/metabolismo , Reflejo de Sobresalto/genética , Estimulación Acústica , Animales , Corticosterona/sangre , Hormona Liberadora de Corticotropina/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Corteza Piriforme/citología , Corteza Piriforme/metabolismo , Receptor Cannabinoide CB1/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sexo
19.
Mol Psychiatry ; 26(11): 6149-6158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34349224

RESUMEN

The COVID-19 pandemic poses multiple psychologically stressful challenges and is associated with an increased risk for mental illness. Previous studies have focused on the psychopathological symptoms associated with the outbreak peak. Here, we examined the behavioural and mental-health impact of the pandemic in Israel using an online survey, during the six weeks encompassing the end of the first outbreak and the beginning of the second. We used clinically validated instruments to assess anxiety- and depression-related emotional distress, symptoms, and coping strategies, as well as questions designed to specifically assess COVID-19-related concerns. Higher emotional burden was associated with being female, younger, unemployed, living in high socioeconomic status localities, having prior medical conditions, encountering more people, and experiencing physiological symptoms. Our findings highlight the environmental context and its importance in understanding individual ability to cope with the long-term stressful challenges of the pandemic.


Asunto(s)
COVID-19 , Ansiedad/epidemiología , Depresión/epidemiología , Brotes de Enfermedades , Femenino , Humanos , Pandemias , SARS-CoV-2 , Estrés Psicológico/epidemiología
20.
Artículo en Inglés | MEDLINE | ID: mdl-34303744

RESUMEN

Post-traumatic stress disorder (PTSD) is a chronic disease caused by traumatic incidents. Numerous studies have revealed grey matter volume differences in affected individuals. The nature of the disease renders it difficult to distinguish between a priori versus a posteriori changes. To overcome this difficulty, we studied the consequences of a traumatic event on brain morphology in mice before and 4 weeks after exposure to brief foot shocks (or sham treatment), and correlated morphology with symptoms of hyperarousal. In the latter context, we assessed hyperarousal upon confrontation with acoustic, visual, or composite (acoustic/visual/tactile) threats and integrated the individual readouts into a single Hyperarousal Score using logistic regression analysis. MRI scans with subsequent whole-brain deformation-based morphometry (DBM) analysis revealed a volume decrease of the dorsal hippocampus and an increase of the reticular nucleus in shocked mice when compared to non-shocked controls. Using the Hyperarousal Score as regressor for the post-exposure MRI measurement, we observed negative correlations with several brain structures including the dorsal hippocampus. If the development of changes with respect to the basal MRI was considered, reduction in globus pallidus volume reflected hyperarousal severity. Our findings demonstrate that a brief traumatic incident can cause volume changes in defined brain structures and suggest the globus pallidus as an important hub for the control of fear responses to threatening stimuli of different sensory modalities.


Asunto(s)
Nivel de Alerta/fisiología , Encéfalo/fisiopatología , Sustancia Gris/fisiología , Trastornos por Estrés Postraumático/fisiopatología , Animales , Globo Pálido , Hipocampo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...