Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Ultrasound Med ; 42(8): 1699-1707, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36723381

RESUMEN

OBJECTIVES: Our previous published studies have focused on safety and effectiveness of using therapeutic ultrasound (TUS) for treatment of type 2 diabetes mellitus (T2DM) in preclinical models. Here we present a set of simulation studies to explore potential ultrasound application schemes that would be feasible in a clinical setting. METHODS: Using the multiphysics modeling tool OnScale, we created two-dimensional (2D) models of the human abdomen from CT images captured from one normal weight adolescent patient, and one obese adolescent patient. Based on our previous studies, the frequency of our TUS was 1 MHz delivered from a planar unfocused transducer. We tested five different insonation angles, as well as four ultrasound intensities combined with four different duty factors and five durations of application to explore how these variables effect the peak pressure and temperature delivered to the pancreas as well as surrounding tissue in the model. RESULTS: We determined that ultrasound applied directly from the anterior of the patient abdomen at 5 W/cm2 delivered consistent acoustic pressures to the pancreas at the levels which we have previously found to be effective at inducing an insulin release from preclinical models. CONCLUSIONS: Our modeling work indicates that it may be feasible to non-invasively apply TUS in clinical treatment of T2DM.


Asunto(s)
Cavidad Abdominal , Diabetes Mellitus Tipo 2 , Obesidad Infantil , Humanos , Adolescente , Insulina/uso terapéutico , Páncreas/diagnóstico por imagen
2.
Ultrasound Med Biol ; 48(6): 1078-1094, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304006

RESUMEN

To the best of our knowledge, therapeutic ultrasound (TUS) is thus far an unexplored means of delivering mechanical stimulation to cardiomyocyte cultures, which is necessary to engineer a more mature cardiomyocyte phenotype in vitro. Spectral ultrasound (SUS) may provide a way to non-invasively, non-disruptively and inexpensively monitor growth and change in cell cultures over long periods. Compared with other measurement methods, SUS as an acoustic measurement tool will not be affected by an acoustic therapy, unlike electrical measurement methods, in which motion caused by acoustic therapy can affect measurements. Further SUS has the potential to provide functional as well as morphological information in cell cultures. Human induced pluripotent stem cell cardiomyocytes (iPS-CMs) were imaged with calcium fluorescence microscopy while TUS was being applied. TUS was applied at 600 kHz and 1, 3.4 and 6 W/cm2 for a continuous 1 s pulse. Measures of the instantaneous beat frequency, repolarization rate and calcium spike amplitude were calculated from the fluorescence data. At 600 kHz, TUS at 1 and 6 W/cm2 had significant effects on the shortening of both the repolarization rate and instantaneous beat rate of the iPS-CMs (p < 0.05), while TUS at 3.4 and 6 W/cm2 had significant effects on the shortening of the calcium spike amplitude (p < 0.05). Three SUS measures and one gray-level measure were captured from the iPS-CM monolayers while they were simultaneously being imaged with calcium-labeled confocal microscopy. The gray-level measure performed the best of all SUS measures; however, it was not reliable enough to produce a consistent determination of the beat rate of the cell. Finally, SUS measures were captured using three different transducers while simultaneously applying TUS. A center-of-mass (COM) measure calculated from the wavelet transform scalogram of the time-averaged radiofrequency data revealed that SUS was able to detect a change in the frequency content of the reflected ultrasound at 1 and 6 W/cm2 before and after ultrasound application (p < 0.05), showing promise for the ability of SUS to measure changes in the beating behavior of iPS-CMs. Overall, SUS is promising as a method for constant monitoring of dynamic cell and tissue culture and growth.


Asunto(s)
Células Madre Pluripotentes Inducidas , Terapia por Ultrasonido , Calcio , Humanos , Miocitos Cardíacos , Ultrasonografía
3.
Ultrasound Med Biol ; 47(3): 666-678, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33257101

RESUMEN

Ultrasound has previously been reported to produce a reversible stimulatory effect in cultured rat beta cells. Here, we quantified and assessed dynamic metabolic changes in an in situ pancreatic slice model evoked by ultrasound application. After plating, pancreas slices were imaged using a confocal microscope at 488 and 633 nm to image lipodamine dehydrogenase (Lip-DH) autofluorescence and a far red fluorescence, respectively. Ultrasound was applied at intensities of 0.5 and 1 W/cm2 at both 800 kHz and 1 MHz. Additionally, 800 kHz at 1 W/cm2 was applied in a pulsing scheme. No ultrasound (control) and glucose application experiments were performed. A difference in fluorescence signal before and after treatment application was the metric for analysis. Comparison of experimental groups using far red fluorescence revealed significant differences between all experimental groups and control in the islet (p < 0.05) and between all ultrasound experimental groups and control (p < 0.05) in pancreatic exocrine tissue. However, this difference in response between control and glucose did not exist in the exocrine tissue. We also observed using Lip-DH autofluorescence that glucose produces a significantly increased metabolic response in islet tissue compared with exocrine tissue (p < 0.05). Pulsed ultrasound appeared to increase metabolic activity in the pancreatic slice in a more consistent manner compared with continuous ultrasound application. Our results indicate that therapeutic ultrasound may have a stimulatory metabolic effect on the pancreatic islets similar to that of glucose.


Asunto(s)
Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de la radiación , Ondas Ultrasónicas , Animales , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...