Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Clin Invest ; 134(5)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227371

RESUMEN

The ability to fight or flee from a threat relies on an acute adrenergic surge that augments cardiac output, which is dependent on increased cardiac contractility and heart rate. This cardiac response depends on ß-adrenergic-initiated reversal of the small RGK G protein Rad-mediated inhibition of voltage-gated calcium channels (CaV) acting through the Cavß subunit. Here, we investigate how Rad couples phosphorylation to augmented Ca2+ influx and increased cardiac contraction. We show that reversal required phosphorylation of Ser272 and Ser300 within Rad's polybasic, hydrophobic C-terminal domain (CTD). Phosphorylation of Ser25 and Ser38 in Rad's N-terminal domain (NTD) alone was ineffective. Phosphorylation of Ser272 and Ser300 or the addition of 4 Asp residues to the CTD reduced Rad's association with the negatively charged, cytoplasmic plasmalemmal surface and with CaVß, even in the absence of CaVα, measured here by FRET. Addition of a posttranslationally prenylated CAAX motif to Rad's C-terminus, which constitutively tethers Rad to the membrane, prevented the physiological and biochemical effects of both phosphorylation and Asp substitution. Thus, dissociation of Rad from the sarcolemma, and consequently from CaVß, is sufficient for sympathetic upregulation of Ca2+ currents.


Asunto(s)
Adrenérgicos , Proteínas de Unión al GTP Monoméricas , Humanos , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Arritmias Cardíacas/metabolismo
3.
Nat Cardiovasc Res ; 1(11): 1022-1038, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36424916

RESUMEN

Fight-or-flight responses involve ß-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for ß-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of ß-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel ß-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.

4.
Nat Cardiovasc Res ; 1(5): 1-13, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35662881

RESUMEN

Voltage-gated sodium (Nav1.5) channels support the genesis and brisk spatial propagation of action potentials in the heart. Disruption of NaV1.5 inactivation results in a small persistent Na influx known as late Na current (I Na,L), which has emerged as a common pathogenic mechanism in both congenital and acquired cardiac arrhythmogenic syndromes. Here, using low-noise multi-channel recordings in heterologous systems, LQTS3 patient-derived iPSCs cardiomyocytes, and mouse ventricular myocytes, we demonstrate that the intracellular fibroblast growth factor homologous factors (FHF1-4) tune pathogenic I Na,L in an isoform-specific manner. This scheme suggests a complex orchestration of I Na,L in cardiomyocytes that may contribute to variable disease expressivity of NaV1.5 channelopathies. We further leverage these observations to engineer a peptide-inhibitor of I Na,L with a higher efficacy as compared to a well-established small-molecule inhibitor. Overall, these findings lend insights into molecular mechanisms underlying FHF regulation of I Na,L in pathophysiology and outline potential therapeutic avenues.

5.
JCI Insight ; 6(23)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34710060

RESUMEN

Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which requires improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We crossbred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mCAT attenuated mitochondrial and cellular reactive oxygen species (ROS) and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidences of spontaneous AF, pacing-induced after-depolarizations, and AF were substantially reduced. Expression of mCAT markedly reduced persistent Na+ current-induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induced atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations, and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.


Asunto(s)
Fibrilación Atrial/terapia , Cardiomiopatías/terapia , Mitocondrias Cardíacas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Animales , Fibrilación Atrial/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatías/metabolismo , Catalasa/genética , Catalasa/metabolismo , Cruzamientos Genéticos , Femenino , Atrios Cardíacos/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
6.
Circ Res ; 128(1): 76-88, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33086983

RESUMEN

RATIONALE: Changing activity of cardiac CaV1.2 channels under basal conditions, during sympathetic activation, and in heart failure is a major determinant of cardiac physiology and pathophysiology. Although cardiac CaV1.2 channels are prominently upregulated via activation of PKA (protein kinase A), essential molecular details remained stubbornly enigmatic. OBJECTIVE: The primary goal of this study was to determine how various factors converging at the CaV1.2 I-II loop interact to regulate channel activity under basal conditions, during ß-adrenergic stimulation, and in heart failure. METHODS AND RESULTS: We generated transgenic mice with expression of CaV1.2 α1C subunits with (1) mutations ablating interaction between α1C and ß-subunits, (2) flexibility-inducing polyglycine substitutions in the I-II loop (GGG-α1C), or (3) introduction of the alternatively spliced 25-amino acid exon 9* mimicking a splice variant of α1C upregulated in the hypertrophied heart. Introducing 3 glycine residues that disrupt a rigid IS6-α-interaction domain helix markedly reduced basal open probability despite intact binding of CaVß to α1C I-II loop and eliminated ß-adrenergic agonist stimulation of CaV1.2 current. In contrast, introduction of the exon 9* splice variant in the α1C I-II loop, which is increased in ventricles of patients with end-stage heart failure, increased basal open probability but did not attenuate stimulatory response to ß-adrenergic agonists when reconstituted heterologously with ß2B and Rad or transgenically expressed in cardiomyocytes. CONCLUSIONS: Ca2+ channel activity is dynamically modulated under basal conditions, during ß-adrenergic stimulation, and in heart failure by mechanisms converging at the α1C I-II loop. CaVß binding to α1C stabilizes an increased channel open probability gating mode by a mechanism that requires an intact rigid linker between the ß-subunit binding site in the I-II loop and the channel pore. Release of Rad-mediated inhibition of Ca2+ channel activity by ß-adrenergic agonists/PKA also requires this rigid linker and ß-binding to α1C.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Canales de Calcio Tipo L/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas ras/metabolismo , Animales , Canales de Calcio Tipo L/genética , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Potenciales de la Membrana , Ratones Transgénicos , Mutación , Miocitos Cardíacos/metabolismo , Fosforilación , Conformación Proteica , Conejos , Relación Estructura-Actividad , Proteínas ras/genética
7.
JCI Insight ; 5(19)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32870823

RESUMEN

The Ca2+-binding protein calmodulin has emerged as a pivotal player in tuning Na+ channel function, although its impact in vivo remains to be resolved. Here, we identify the role of calmodulin and the NaV1.5 interactome in regulating late Na+ current in cardiomyocytes. We created transgenic mice with cardiac-specific expression of human NaV1.5 channels with alanine substitutions for the IQ motif (IQ/AA). The mutations rendered the channels incapable of binding calmodulin to the C-terminus. The IQ/AA transgenic mice exhibited normal ventricular repolarization without arrhythmias and an absence of increased late Na+ current. In comparison, transgenic mice expressing a lidocaine-resistant (F1759A) human NaV1.5 demonstrated increased late Na+ current and prolonged repolarization in cardiomyocytes, with spontaneous arrhythmias. To determine regulatory factors that prevent late Na+ current for the IQ/AA mutant channel, we considered fibroblast growth factor homologous factors (FHFs), which are within the NaV1.5 proteomic subdomain shown by proximity labeling in transgenic mice expressing NaV1.5 conjugated to ascorbate peroxidase. We found that FGF13 diminished late current of the IQ/AA but not F1759A mutant cardiomyocytes, suggesting that endogenous FHFs may serve to prevent late Na+ current in mouse cardiomyocytes. Leveraging endogenous mechanisms may furnish an alternative avenue for developing novel pharmacology that selectively blunts late Na+ current.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/patología , Calmodulina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Mutación , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Calmodulina/genética , Femenino , Factores de Crecimiento de Fibroblastos/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Unión Proteica , Sodio/metabolismo
8.
Nature ; 577(7792): 695-700, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969708

RESUMEN

Increased cardiac contractility during the fight-or-flight response is caused by ß-adrenergic augmentation of CaV1.2 voltage-gated calcium channels1-4. However, this augmentation persists in transgenic murine hearts expressing mutant CaV1.2 α1C and ß subunits that can no longer be phosphorylated by protein kinase A-an essential downstream mediator of ß-adrenergic signalling-suggesting that non-channel factors are also required. Here we identify the mechanism by which ß-adrenergic agonists stimulate voltage-gated calcium channels. We express α1C or ß2B subunits conjugated to ascorbate peroxidase5 in mouse hearts, and use multiplexed quantitative proteomics6,7 to track hundreds of proteins in the proximity of CaV1.2. We observe that the calcium-channel inhibitor Rad8,9, a monomeric G protein, is enriched in the CaV1.2 microenvironment but is depleted during ß-adrenergic stimulation. Phosphorylation by protein kinase A of specific serine residues on Rad decreases its affinity for ß subunits and relieves constitutive inhibition of CaV1.2, observed as an increase in channel open probability. Expression of Rad or its homologue Rem in HEK293T cells also imparts stimulation of CaV1.3 and CaV2.2 by protein kinase A, revealing an evolutionarily conserved mechanism that confers adrenergic modulation upon voltage-gated calcium channels.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteómica , Receptores Adrenérgicos beta/metabolismo , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo N/metabolismo , Microambiente Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Masculino , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Miocardio/metabolismo , Fosforilación , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transducción de Señal , Proteínas ras/química , Proteínas ras/metabolismo
9.
J Clin Invest ; 129(2): 647-658, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30422117

RESUMEN

Ca2+ channel ß-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant α1C subunits lacking capacity to bind CaVß can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these ß-less Ca2+ channels cannot be stimulated by ß-adrenergic pathway agonists, and thus adrenergic augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a ß-subunit-sequestering peptide sharply curtailed ß-adrenergic stimulation of WT Ca2+ channels, identifying an approach to specifically modulate ß-adrenergic regulation of cardiac contractility. Our data demonstrate that ß subunits are required for ß-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Animales , Canales de Calcio Tipo L/genética , Cobayas , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Transporte de Proteínas , Sarcolema/genética
10.
Proc Natl Acad Sci U S A ; 114(34): 9194-9199, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28784807

RESUMEN

Calcium influx through the voltage-dependent L-type calcium channel (CaV1.2) rapidly increases in the heart during "fight or flight" through activation of the ß-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of ß-adrenergic activation of cardiac CaV1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α1C and C-terminal proteolytic cleavage of the α1C subunit. We generated transgenic mice expressing an α1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for ß-adrenergic regulation of CaV1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute ß-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α1C Prevention of C-terminal cleavage did not alter ß-adrenergic stimulation of CaV1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α1C in ß-adrenergic stimulation of CaV1.2, and show that phosphoregulatory sites on α1C are not redundant and do not each fractionally contribute to the net stimulatory effect of ß-adrenergic stimulation. Further, proteolytic cleavage of α1C is not required for ß-adrenergic stimulation of CaV1.2.


Asunto(s)
Adrenérgicos/metabolismo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocardio/metabolismo , Animales , Canales de Calcio Tipo L/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Cobayas , Humanos , Ratones , Ratones Transgénicos , Fosforilación , Dominios Proteicos , Proteolisis , Conejos , Ratas
11.
Sci Rep ; 5: 11427, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26169582

RESUMEN

Oxidative stress has been suggested to play a role in the pathogenesis of atrial fibrillation (AF). Indeed, the prevalence of AF increases with age as does oxidative stress. However, the mechanisms linking redox state to AF are not well understood. In this study we identify a link between oxidative stress and aberrant intracellular Ca(2+) release via the type 2 ryanodine receptor (RyR2) that promotes AF. We show that RyR2 are oxidized in the atria of patients with chronic AF compared with individuals in sinus rhythm. To dissect the molecular mechanism linking RyR2 oxidation to AF we used two murine models harboring RyR2 mutations that cause intracellular Ca(2+) leak. Mice with intracellular Ca(2+) leak exhibited increased atrial RyR2 oxidation, mitochondrial dysfunction, reactive oxygen species (ROS) production and AF susceptibility. Both genetic inhibition of mitochondrial ROS production and pharmacological treatment of RyR2 leakage prevented AF. Collectively, our results indicate that alterations of RyR2 and mitochondrial ROS generation form a vicious cycle in the development of AF. Targeting this previously unrecognized mechanism could be useful in developing effective interventions to prevent and treat AF.


Asunto(s)
Fibrilación Atrial/metabolismo , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo , Factores de Edad , Animales , Fibrilación Atrial/genética , Calcio/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Humanos , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Tiazepinas/farmacología
12.
J Mol Cell Cardiol ; 64: 120-3, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24041536

RESUMEN

Abnormalities in intracellular Ca(2+) signaling have been proposed to play an essential role in the pathophysiology of atrial arrhythmias. However, a direct observation of intracellular Ca(2+) in atrial myocytes during atrial arrhythmias is lacking. Here, we have developed an ex vivo model of simultaneous Ca(2+) imaging and electrocardiographic recording in cardiac atria. Using this system we were able to record atrial arrhythmic intracellular Ca(2+) activities. Our results indicate that atrial arrhythmias can be tightly linked to intracellular Ca(2+) waves and Ca(2+) alternans. Moreover, we applied this strategy to analyze Ca(2+) signals in the hearts of WT and knock-in mice harboring a 'leaky' type 2 ryanodine receptor (RyR2-R2474S). We showed that sarcoplasmic reticulum (SR) Ca(2+) leak increases the susceptibility to Ca(2+) alternans and Ca(2+) waves increasing the incidence of atrial arrhythmias. Reduction of SR Ca(2+) leak via RyR2 by acute treatment with S107 reduced both Ca(2+) alternans and Ca(2+) waves, and prevented atrial arrhythmias.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Impresión Molecular , Animales , Arritmias Cardíacas/genética , Señalización del Calcio , Modelos Animales de Enfermedad , Electrocardiografía , Técnicas In Vitro , Espacio Intracelular/metabolismo , Ratones , Ratones Noqueados , Impresión Molecular/métodos , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
13.
Cell ; 150(5): 1055-67, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939628

RESUMEN

The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating ß-adrenergic receptors and activating cAMP signaling pathways in neurons. In a murine chronic restraint stress model, neuronal RyR2 were phosphorylated by protein kinase A (PKA), oxidized, and nitrosylated, resulting in depletion of the stabilizing subunit calstabin2 (FKBP12.6) from the channel complex and intracellular calcium leak. Stress-induced cognitive dysfunction, including deficits in learning and memory, and reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection were rescued by oral administration of S107, a compound developed in our laboratory that stabilizes RyR2-calstabin2 interaction, or by genetic ablation of the RyR2 PKA phosphorylation site at serine 2808. Thus, neuronal RyR2 remodeling contributes to stress-induced cognitive dysfunction. Leaky RyR2 could be a therapeutic target for treatment of stress-induced cognitive dysfunction.


Asunto(s)
Trastornos del Conocimiento/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos de Estrés Traumático/metabolismo
14.
Circ Res ; 111(6): 708-17, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22828895

RESUMEN

RATIONALE: Atrial fibrillation (AF) is the most common cardiac arrhythmia, however the mechanism(s) causing AF remain poorly understood and therapy is suboptimal. The ryanodine receptor (RyR2) is the major calcium (Ca2+) release channel on the sarcoplasmic reticulum (SR) required for excitation-contraction coupling in cardiac muscle. OBJECTIVE: In the present study, we sought to determine whether intracellular diastolic SR Ca2+ leak via RyR2 plays a role in triggering AF and whether inhibiting this leak can prevent AF. METHODS AND RESULTS: We generated 3 knock-in mice with mutations introduced into RyR2 that result in leaky channels and cause exercise induced polymorphic ventricular tachycardia in humans [catecholaminergic polymorphic ventricular tachycardia (CPVT)]. We examined AF susceptibility in these three CPVT mouse models harboring RyR2 mutations to explore the role of diastolic SR Ca2+ leak in AF. AF was stimulated with an intra-esophageal burst pacing protocol in the 3 CPVT mouse models (RyR2-R2474S+/-, 70%; RyR2-N2386I+/-, 60%; RyR2-L433P+/-, 35.71%) but not in wild-type (WT) mice (P<0.05). Consistent with these in vivo results, there was a significant diastolic SR Ca2+ leak in atrial myocytes isolated from the CPVT mouse models. Calstabin2 (FKBP12.6) is an RyR2 subunit that stabilizes the closed state of RyR2 and prevents a Ca2+ leak through the channel. Atrial RyR2 from RyR2-R2474S+/- mice were oxidized, and the RyR2 macromolecular complex was depleted of calstabin2. The Rycal drug S107 stabilizes the closed state of RyR2 by inhibiting the oxidation/phosphorylation induced dissociation of calstabin2 from the channel. S107 reduced the diastolic SR Ca2+ leak in atrial myocytes and decreased burst pacing-induced AF in vivo. S107 did not reduce the increased prevalence of burst pacing-induced AF in calstabin2-deficient mice, confirming that calstabin2 is required for the mechanism of action of the drug. CONCLUSIONS: The present study demonstrates that RyR2-mediated diastolic SR Ca2+ leak in atrial myocytes is associated with AF in CPVT mice. Moreover, the Rycal S107 inhibited diastolic SR Ca2+ leak through RyR2 and pacing-induced AF associated with CPVT mutations.


Asunto(s)
Fibrilación Atrial/metabolismo , Calcio/metabolismo , Modelos Animales de Enfermedad , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Cafeína/farmacología , Estimulación Cardíaca Artificial , Células Cultivadas , Electrocardiografía/efectos de los fármacos , Epinefrina/farmacología , Técnicas de Sustitución del Gen , Corazón/efectos de los fármacos , Corazón/fisiopatología , Humanos , Immunoblotting , Ratones , Ratones Noqueados , Mutación , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal/fisiología , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Tiazepinas/farmacología
15.
Cell Metab ; 15(5): 739-51, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22503562

RESUMEN

Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis.


Asunto(s)
Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Ayuno/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Animales , Glucemia/metabolismo , Núcleo Celular/metabolismo , AMP Cíclico/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Glucagón/metabolismo , Gluconeogénesis , Glucogenólisis , Hepatocitos/metabolismo , Homeostasis , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
J Clin Invest ; 120(12): 4375-87, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21099115

RESUMEN

Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor/calcium release channel (RyR2) is thought to play a role in heart failure (HF) progression. Inhibition of this leak is an emerging therapeutic strategy. To explore the role of chronic PKA phosphorylation of RyR2 in HF pathogenesis and treatment, we generated a knockin mouse with aspartic acid replacing serine 2808 (mice are referred to herein as RyR2-S2808D+/+ mice). This mutation mimics constitutive PKA hyperphosphorylation of RyR2, which causes depletion of the stabilizing subunit FKBP12.6 (also known as calstabin2), resulting in leaky RyR2. RyR2-S2808D+/+ mice developed age-dependent cardiomyopathy, elevated RyR2 oxidation and nitrosylation, reduced SR Ca2+ store content, and increased diastolic SR Ca2+ leak. After myocardial infarction, RyR2-S2808D+/+ mice exhibited increased mortality compared with WT littermates. Treatment with S107, a 1,4-benzothiazepine derivative that stabilizes RyR2-calstabin2 interactions, inhibited the RyR2-mediated diastolic SR Ca2+ leak and reduced HF progression in WT and RyR2-S2808D+/+ mice. In contrast, ß-adrenergic receptor blockers improved cardiac function in WT but not in RyR2-S2808D+/+ mice.Thus, chronic PKA hyperphosphorylation of RyR2 results in a diastolic leak that causes cardiac dysfunction. Reversing PKA hyperphosphorylation of RyR2 is an important mechanism underlying the therapeutic action of ß-blocker therapy in HF.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Insuficiencia Cardíaca/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sustitución de Aminoácidos , Animales , Señalización del Calcio/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Ratones , Ratones Mutantes , Ratones Transgénicos , Mutación Missense , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo
17.
J Clin Invest ; 118(6): 2230-45, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18483626

RESUMEN

The Ca2+ release channel ryanodine receptor 2 (RyR2) is required for excitation-contraction coupling in the heart and is also present in the brain. Mutations in RyR2 have been linked to exercise-induced sudden cardiac death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). CPVT-associated RyR2 mutations result in "leaky" RyR2 channels due to the decreased binding of the calstabin2 (FKBP12.6) subunit, which stabilizes the closed state of the channel. We found that mice heterozygous for the R2474S mutation in Ryr2 (Ryr2-R2474S mice) exhibited spontaneous generalized tonic-clonic seizures (which occurred in the absence of cardiac arrhythmias), exercise-induced ventricular arrhythmias, and sudden cardiac death. Treatment with a novel RyR2-specific compound (S107) that enhances the binding of calstabin2 to the mutant Ryr2-R2474S channel inhibited the channel leak and prevented cardiac arrhythmias and raised the seizure threshold. Thus, CPVT-associated mutant leaky Ryr2-R2474S channels in the brain can cause seizures in mice, independent of cardiac arrhythmias. Based on these data, we propose that CPVT is a combined neurocardiac disorder in which leaky RyR2 channels in the brain cause epilepsy, and the same leaky channels in the heart cause exercise-induced sudden cardiac death.


Asunto(s)
Muerte Súbita Cardíaca/etiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Epilepsia/genética , Epilepsia/metabolismo , Heterocigoto , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Modelos Genéticos , Mutación , Mutación Missense , Polimorfismo Genético , Canal Liberador de Calcio Receptor de Rianodina/genética , Proteínas de Unión a Tacrolimus/metabolismo
18.
Proc Natl Acad Sci U S A ; 104(37): 14610-5, 2007 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-17804788

RESUMEN

The autofluorescent lipofuscin pigment A2E accumulates in retinal pigment epithelial cells with age and is particularly abundant in some retinal disorders. To generate a polyclonal antibody that recognizes this pyridinium bisretinoid molecule, we immunized rabbits with bovine serum albumin (BSA) conjugates in which the protein was linked to the A2E molecule via its pyridinium ethanolamine moiety. Analysis by matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) of the A2E-BSA conjugate indicated the presence of five intact A2E molecules covalently linked to BSA, thus deeming it a suitable antigen for immunization. By immunocytochemical staining, the rabbit polyclonal antibody recognized A2E that had accumulated in cultured cells, whereas dot-blot analysis revealed binding to both A2E and A2E-rabbit serum albumin (A2E-RSA) conjugate but no cross-reactivity with various retinoids. Preimmune serum was nonreactive. In fluorescence spectroscopy studies, antibody-A2E binding was evidenced by a fluorescence increase and by a blue-shift in the emission maximum consistent with a change in A2E milieu upon antibody binding. The changes in fluorescence emission upon antibody binding could reflect several processes including restrictions on trans-cis isomerization and intersystem crossing of photo-excited A2E.


Asunto(s)
Lipofuscina/metabolismo , Epitelio Pigmentado Ocular/metabolismo , Compuestos de Piridinio/metabolismo , Retina/citología , Retinoides/metabolismo , Animales , Bovinos , Células Cultivadas , Dicroismo Circular , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Inmunohistoquímica , Lipofuscina/química , Modelos Químicos , Estructura Molecular , Epitelio Pigmentado Ocular/citología , Compuestos de Piridinio/química , Conejos , Retinoides/biosíntesis , Retinoides/química , Albúmina Sérica Bovina/inmunología , Albúmina Sérica Bovina/metabolismo , Espectrometría de Fluorescencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Ultravioleta
19.
Cancer Lett ; 244(1): 71-5, 2006 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-16442707

RESUMEN

Antibodies, especially monoclonal antibodies, are highly specific for their target antigens and have found extensive clinical application in the treatment of infectious diseases and neoplasia. However, they have a major shortcoming which, if overcome, would greatly expand their utility: an inability to penetrate the outer membrane of cells and act on intracellular targets. We demonstrated previously that this deficiency could be overcome by covalent linkage of an oligoarginine sequence to the conserved carbohydrate moiety present in the CH2 region of immunoglobulins. Immune specificity was maintained but no attempt was made to test for biological activity related to specificity. Here, we report that a polyarginated monoclonal anti-cyclin D1 enters cells and inhibits cell cycle progression. We demonstrate this with NIH 3T3 cells and with two tumor cell lines, HT29 and SW480. As many tumors overexpress cyclin D1, an intracellular anti-cyclin D1, properly targeted, has the potential to be a novel broad range inhibitor of tumor cell multiplication. Moreover, success with intracellular anti-cyclin D1 suggests that polyarginated antibodies, in general, could be a new, widely applicable experimental tool to investigate and influence intracellular processes, whether native to cells or introduced into cells by outside entities such as viruses.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Ciclo Celular/efectos de los fármacos , Ciclina D1/inmunología , Péptidos/química , Animales , Anticuerpos Monoclonales/química , Proliferación Celular , Sistemas de Liberación de Medicamentos , Células HT29/efectos de los fármacos , Humanos , Técnicas para Inmunoenzimas , Ratones , Células 3T3 NIH/efectos de los fármacos , Neoplasias/patología , Células Tumorales Cultivadas
20.
Blood Cells Mol Dis ; 31(2): 286-90, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12972037

RESUMEN

As a result of an in vitro screening effort the antiviral agent acyclovir was found to inhibit aggregation of hemoglobin S and the sickling of erythrocytes from individuals with sickle cell disease. Sickling of the erythrocytes was significantly inhibited at 200 microg/ml under essentially anaerobic conditions, considerably more hypoxic than the conditions in which sickling occurs in sickle cell patients. The structurally related guanine-based antiviral agents ganciclovir, valacyclovir, and penciclovir were also tested. Valacyclovir and ganciclovir showed comparable anti-sickling activity at concentrations similar to that of acyclovir. An examination of the shared structural characteristics of the four guanine derivatives linked anti-sickling activity to the presence of an oxygen atom alpha to the N9 of the guanine moiety. These findings suggest a new approach in the search for new agents for the treatment of patients with sickle cell disease.


Asunto(s)
Aciclovir/análogos & derivados , Anemia de Células Falciformes/tratamiento farmacológico , Antivirales/farmacología , Eritrocitos/efectos de los fármacos , Hemoglobina Falciforme/efectos de los fármacos , Valina/análogos & derivados , Aciclovir/química , Aciclovir/farmacología , Anemia de Células Falciformes/patología , Antivirales/química , Antivirales/uso terapéutico , Agregación Celular , Separación Celular , Eritrocitos/metabolismo , Eritrocitos/patología , Ganciclovir/química , Ganciclovir/farmacología , Hemoglobina Falciforme/metabolismo , Humanos , Oxígeno/metabolismo , Valaciclovir , Valina/química , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...