Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7300, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181869

RESUMEN

Cryo-electron microscopy (cryo-EM) has been widely used to reveal the structures of proteins at atomic resolution. One key challenge is that almost all proteins are predominantly adsorbed to the air-water interface during standard cryo-EM specimen preparation. The interaction of proteins with air-water interface will significantly impede the success of reconstruction and achievable resolution. Here, we highlight the critical role of impenetrable surfactant monolayers in passivating the air-water interface problems, and develop a robust effective method for high-resolution cryo-EM analysis, by using the superstructure GSAMs which comprises surfactant self-assembled monolayers (SAMs) and graphene membrane. The GSAMs works well in enriching the orientations and improving particle utilization ratio of multiple proteins, facilitating the 3.3-Å resolution reconstruction of a 100-kDa protein complex (ACE2-RBD), which shows strong preferential orientation using traditional specimen preparation protocol. Additionally, we demonstrate that GSAMs enables the successful determinations of small proteins (<100 kDa) at near-atomic resolution. This study expands the understanding of SAMs and provides a key to better control the interaction of protein with air-water interface.


Asunto(s)
Aire , Microscopía por Crioelectrón , Grafito , Agua , Microscopía por Crioelectrón/métodos , Agua/química , Grafito/química , Tensoactivos/química , Proteínas/química , Humanos
2.
Adv Mater ; 35(28): e2301410, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37022924

RESUMEN

Electroepitaxy is recognized as an effective approach to prepare metal electrodes with nearly complete reversibility. Nevertheless, large-scale manipulation is still not attainable owing to complicated interfacial chemistry. Here, the feasibility of extending Zn electroepitaxy toward the bulk phase over a mass-produced mono-oriented Cu(111) foil is demonstrated. Interfacial Cu-Zn alloy and turbulent electroosmosis are circumvented by adopting a potentiostatic electrodeposition protocol. The as-prepared Zn single-crystalline anode enables stable cycling of symmetric cells at a stringent current density of 50.0 mA cm-2 . The assembled full cell further sustaines a capacity retention of 95.7% at 5.0 A g-1 for 1500 cycles, accompanied by a controllably low N/P ratio of 7.5. In addition to Zn, Ni electroepitaxy can be realized by using the same approach. This study may inspire rational exploration of the design of high-end metal electrodes.


Asunto(s)
Aleaciones , Galvanoplastia , Electrodos , Zinc
3.
ACS Nano ; 16(1): 285-294, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34965103

RESUMEN

The epitaxial growth of single-crystal thin films relies on the availability of a single-crystal substrate and a strong interaction between epilayer and substrate. Previous studies have reported the roles of the substrate (e.g., symmetry and lattice constant) in determining the orientations of chemical vapor deposition (CVD)-grown graphene, and Cu(111) is considered as the most promising substrate for epitaxial growth of graphene single crystals. However, the roles of gas-phase reactants and graphene-substrate interaction in determining the graphene orientation are still unclear. Here, we find that trace amounts of oxygen is capable of enhancing the interaction between graphene edges and Cu(111) substrate and, therefore, eliminating the misoriented graphene domains in the nucleation stage. A modified anomalous grain growth method is developed to improve the size of the as-obtained Cu(111) single crystal, relying on strongly textured polycrystalline Cu foils. The batch-to-batch production of A3-size (∼0.42 × 0.3 m2) single-crystal graphene films is achieved on Cu(111) foils relying on a self-designed pilot-scale CVD system. The as-grown graphene exhibits ultrahigh carrier mobilities of 68 000 cm2 V-1 s-1 at room temperature and 210 000 cm2 V-1 s-1 at 2.2 K. The findings and strategies provided in our work would accelerate the mass production of high-quality misorientation-free graphene films.

4.
Adv Mater ; 34(1): e2105851, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34647373

RESUMEN

Formation of graphene wrinkle arrays can periodically alter the electrical properties and chemical reactivity of graphene, which is promising for numerous applications. However, large-area fabrication of graphene wrinkle arrays remains unachievable with a high density and defined orientations, especially on rigid substrates. Herein, relying on the understanding of the formation mechanism of transfer-related graphene wrinkles, the graphene wrinkle arrays are fabricated without altering the crystalline orientation of entire graphene films. The choice of the transfer medium that has poor wettability on the corrugated surface of graphene is proven to be the key for the formation of wrinkles. This work provides a deep understanding of formation process of transfer-related graphene wrinkles and opens up a new way for periodically modifying the surface properties of graphene for potential applications, including direct growth of AlN epilayers and deep ultraviolet light emitting diodes.

5.
Nat Commun ; 12(1): 2391, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888688

RESUMEN

Twisted bilayer graphene (tBLG) has recently attracted growing interest due to its unique twist-angle-dependent electronic properties. The preparation of high-quality large-area bilayer graphene with rich rotation angles would be important for the investigation of angle-dependent physics and applications, which, however, is still challenging. Here, we demonstrate a chemical vapor deposition (CVD) approach for growing high-quality tBLG using a hetero-site nucleation strategy, which enables the nucleation of the second layer at a different site from that of the first layer. The fraction of tBLGs in bilayer graphene domains with twist angles ranging from 0° to 30° was found to be improved to 88%, which is significantly higher than those reported previously. The hetero-site nucleation behavior was carefully investigated using an isotope-labeling technique. Furthermore, the clear Moiré patterns and ultrahigh room-temperature carrier mobility of 68,000 cm2 V-1 s-1 confirmed the high crystalline quality of our tBLG. Our study opens an avenue for the controllable growth of tBLGs for both fundamental research and practical applications.

6.
ACS Appl Mater Interfaces ; 13(8): 10328-10335, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33599473

RESUMEN

Graphene holds great potential for fabricating ultrathin selective membranes possessing high permeability without compromising selectivity and has attracted intensive interest in developing high-performance separation membranes for desalination, natural gas purification, hemodialysis, distillation, and other gas-liquid separation. However, the scalable and cost-effective synthesis of nanoporous graphene membranes, especially designing a method to produce an appropriate porous polymer substrate, remains very challenging. Here, we report a facile route to fabricate decimeter-scale (∼15 × 10 cm2) nanoporous atomically thin membranes (NATMs) via the direct casting of the porous polymer substrate onto graphene, which was produced by chemical vapor deposition (CVD). After the vapor-induced phase-inversion process under proper experimental conditions (60 °C and 60% humidity), the flexible nanoporous polymer substrate was formed. The resultant skin-free polymer substrate, which had the proper pore size and a uniform spongelike structure, provided enough mechanical support without reducing the permeance of the NATMs. It was demonstrated that after creating nanopores by the O2 plasma treatment, the NATMs were salt-resistant and simultaneously showed 3-5 times higher gas (CO2) permeance than the state-of-the-art commercial polymeric membranes. Therefore, our work provides guidance for the technological developments of graphene-based membranes and bridges the gap between the laboratory-scale "proof-of-concept" and the practical applications of NATMs in the industry.

7.
Adv Mater ; 32(29): e2002034, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32529704

RESUMEN

The rich and complex arrangements of metal atoms in high-index metal facets afford appealing physical and chemical properties, which attracts extensive research interest in material science for the applications in catalysis and surface chemistry. However, it is still a challenge to prepare large-area high-index single crystals in a controllable and cost-efficient manner. Herein, entire commercially available decimeter-sized polycrystalline Cu foils are successfully transformed into single crystals with a series of high-index facets, relying on a strain-engineered anomalous grain growth technique. The introduction of a moderate thermal-contact stress upon the Cu foil during the annealing leads to the formation of high-index grains dominated by the thermal strain of the Cu foils, rather than the (111) surface driven by the surface energy. Besides, the designed static gradient of the temperature enables the as-formed high-index grain seed to expand throughout the entire Cu foil. The as-received high-index Cu foils can serve as the templates for producing high-index single-crystal Cu-based alloys. This work provides an appealing material basis for the epitaxial growth of 2D materials, and the applications that require the unique surface structures of high-index metal foils and their alloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...