Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169396, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38114036

RESUMEN

We paired mercury (Hg) concentrations in dragonfly larvae with water chemistry in 29 U.S. national parks to highlight how ecological and biogeochemical context (habitat, dissolved organic carbon [DOC]) influence drivers of Hg bioaccumulation. Although prior studies have defined influences of biogeochemical variables on Hg production and bioaccumulation, it has been challenging to determine their influence across diverse habitats, regions, or biogeochemical conditions within a single study. We compared global (i.e., all sites), habitat-specific, and DOC-class models to illuminate how these controls on biotic Hg vary. Although the suite of important biogeochemical factors across all sites (e.g., aqueous Hg, DOC, sulfate [SO42-], and pH) was consistent with general findings in the literature, contrasting the restricted models revealed more nuanced controls on biosentinel Hg. Comparing habitats, aqueous (filtered) total mercury (THg) and SO42- were important in lentic systems whereas aqueous (filtered) methylmercury (MeHg), DOC, pH, and SO42- were important in lotic and wetland systems. The ability to identify important variables varied among habitats, with less certainty in lentic (model weight (W) = 0.05) than lotic (W = 0.11) or wetland habitats (W = 0.23), suggesting that biogeochemical drivers of bioaccumulation are more variable, or obscured by other aspects of Hg cycling, in these habitats. Results revealed a contrast in the importance of aqueous MeHg versus aqueous THg between DOC-classes: in low-DOC sites (<8.5 mg/L), availability of upstream inputs of MeHg appeared more important for bioaccumulation; in high-DOC sites (>8.5 mg/L) THg was more important, suggesting a link to in-situ controls on bioavailability of Hg for MeHg production. Mercury bioaccumulation (indicated by bioaccumulation factor) was more efficient in low DOC-class sites, likely due to reduced partitioning of aqueous MeHg to DOC. Together, findings highlight substantial variation in the drivers of Hg bioaccumulation and suggest consideration of these factors in natural resource management and decision-making.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Odonata , Contaminantes Químicos del Agua , Animales , Mercurio/análisis , Larva , Materia Orgánica Disuelta , Bioacumulación , Contaminantes Químicos del Agua/análisis , Ecosistema , Agua , Monitoreo del Ambiente
2.
Sci Total Environ ; 886: 163996, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37164101

RESUMEN

Estuarine systems have received ongoing mercury (Hg) inputs from both point sources and regional contamination and have high legacy Hg in sediments. This is an environmental concern given that coastal seafood is an important vector for human exposure to methylmercury (MeHg). The base of the food chain represents the most important trophic steps for MeHg bioaccumulation. The magnitude of the uptake by phytoplankton, and their consumers, is influenced by many factors, in addition to sediment and water MeHg concentrations, that impact MeHg assimilation into phytoplankton and the trophic transfer to higher trophic levels, both benthic and pelagic. For forage fish, such as mummichogs (Fundulus heteroclitus), abiotic and biotic (bioenergetic) factors can influence their MeHg content, and diet is also important as they feed both on benthic and pelagic prey. Given that the importance of sediment MeHg versus pelagic MeHg sources has been debated, we updated a phytoplankton bioaccumulation model, and coupled this with a bioaccumulation model for MeHg concentration in mummichog tissue to examine the controlling factors for sites, from Maine to Maryland, USA, ranging widely in their Hg concentrations and other variables. The study highlighted the importance of DOC in modulating uptake into the pelagic food web, but also demonstrated the importance of diet in controlling mummichog MeHg. Finally, the relative importance of MeHg source - sediment or water column - was correlated with the level of Hg contamination. Sediment-derived MeHg was a more important source for highly Hg contaminated systems. As water column and sediment MeHg are not strongly correlated for the studied ecosystems, their importance as a source of MeHg to mummichogs varies with location. The study highlights the differences across ecosystems in MeHg bioaccumulation pathways, and that uptake into phytoplankton is an important variable controlling forage fish concentration.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Humanos , Compuestos de Metilmercurio/metabolismo , Cadena Alimentaria , Ecosistema , Bioacumulación , Mercurio/análisis , Peces/metabolismo , Fitoplancton/metabolismo , Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
4.
Curr Environ Health Rep ; 9(4): 591-603, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36255596

RESUMEN

PURPOSE OF REVIEW: Per- and polyfluoroalkyl substances (PFAS) are a diverse class of persistent, fluorinated surfactants used widely in industrial and commercial applications with known adverse health effects. Seafood consumption is thought to be an underappreciated source of PFAS exposure in the general population. This review synthesizes the current understanding of PFAS occurrence in shellfish, a term used to describe animals such as mollusk bivalves, certain gastropods (snails), cephalopods (e.g., octopuses and squid), and crustaceans, and highlights scientific gaps relative to bioaccumulation and the protection of shellfish consumers. RECENT FINDINGS: A range of sampling methodologies are used across studies, and the suite of PFAS surveyed across studies is highly variable. Concentrations of PFAS observed in shellfish vary by geographic location, shellfish species, habitat, and across PFAS compounds, and studies informing estimates of bioaccumulation of PFAS in shellfish are extremely limited at this time. This review identifies several important opportunities for researchers to standardize PFAS sampling techniques, sample preparation, and analytical methodologies to allow for better comparison of PFAS analytes both within and across future studies. Increasing the range of geographic locations where samples are collected is also a critical priority to support a greater knowledge of worldwide PFAS contamination. When put into the context of risk to consumer, concentrations of PFAS, especially PFOS, found in shellfish collected from sites containing aqueous film-forming foam (AFFF) and industrial contamination may present risks to frequent consumers. Further research is needed to protect shellfish consumers and to inform shellfish advisories and health protective policies.


Asunto(s)
Política de Salud , Humanos
5.
Sci Rep ; 11(1): 16859, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413329

RESUMEN

Climate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (< 40 µm) and larger sized plankton (microplankton; 40-200 µm), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels.


Asunto(s)
Dieta , Ácidos Grasos Esenciales/análisis , Compuestos de Metilmercurio/análisis , Temperatura , Animales , Cadena Alimentaria , Lagos , Zooplancton/fisiología
6.
Curr Environ Health Rep ; 8(2): 71-88, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33934293

RESUMEN

PURPOSE OF REVIEW: Our comparative analysis sought to understand the factors which drive differences in fish consumption advisories across the USA - including exposure scenarios (acute and chronic health risk, non-cancer and cancer health endpoints), toxicity values (reference dose, cancer slope factor, acute tolerance level), and meal size and bodyweight assumptions. RECENT FINDINGS: Fish consumption provides essential nutrients but also results in exposure to contaminants such as PCBs and methylmercury. To protect consumers from the risks of fish contaminants, fish consumption advisories are established, most often by state jurisdictions, to estimate the amount of a certain fish species a person could consume throughout their lifetime without harm. However, inconsistencies in advisories across the USA confuse consumers and undermine the public health goals of fish advisory programs. To date, no rigorous comparison of state and national fish consumption advisories has been reported. Our work identifies discrepancies in key assumptions used to derive risk-based advisories between US states, reflecting differences in the interpretation of toxicity science. We also address the implications for these differences by reviewing advisories issued by contiguous states bordering two waterbodies: Lake Michigan and the Lower Mississippi River. Our findings highlight the importance of regional collaboration when issuing advisories, so that consumers of self-caught fish are equipped with clear knowledge to make decisions to protect their health.


Asunto(s)
Compuestos de Metilmercurio , Bifenilos Policlorados , Animales , Peces , Contaminación de Alimentos , Humanos
7.
Artículo en Inglés | MEDLINE | ID: mdl-33923256

RESUMEN

Most amyotrophic lateral sclerosis (ALS) cases are considered sporadic, without a known genetic basis, and lifestyle factors are suspected to play an etiologic role. We previously observed increased risk of ALS associated with high nail mercury levels as an exposure biomarker and thus hypothesized that mercury exposure via fish consumption patterns increases ALS risk. Lifestyle surveys were obtained from ALS patients (n = 165) and n = 330 age- and sex-matched controls without ALS enrolled in New Hampshire, Vermont, or Ohio, USA. We estimated their annual intake of mercury and omega-3 polyunsaturated fatty acid (PUFA) via self-reported seafood consumption habits, including species and frequency. In our multivariable model, family income showed a significant positive association with ALS risk (p = 0.0003, adjusted for age, sex, family history, education, and race). Neither the estimated annual mercury nor omega-3 PUFA intakes via seafood were associated with ALS risk. ALS incidence is associated with socioeconomic status; however, consistent with a prior international study, this relationship is not linked to mercury intake estimated via fish or seafood consumption patterns.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ácidos Grasos Omega-3 , Mercurio , Esclerosis Amiotrófica Lateral/inducido químicamente , Esclerosis Amiotrófica Lateral/epidemiología , Animales , Peces , Humanos , New Hampshire , Ohio , Alimentos Marinos/análisis , Estados Unidos/epidemiología
8.
Environ Res ; 194: 110629, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33358725

RESUMEN

Biogeochemical conditions and landscape can have strong influences on mercury bioaccumulation in fish, but these effects across regional scales and between sites with and without point sources of contamination are not well understood. Normal means clustering, a type of unsupervised machine learning, was used to analyze relationships between forage fish (Fundulus heteroclitus and Menidia menidia) mercury (Hg) concentrations and sediment and water column Hg and methylmercury (MeHg) concentrations, ancillary variables, and land classifications within the sub-watershed. The analysis utilized data from 38 sites in 8 estuarine systems in the Northeast US, collected over five years. A large range of mercury concentrations and land use proportions were observed across sites. The cluster correlations indicated that for Fundulus, benthic and pelagic Hg and MeHg concentrations were most related to tissue concentrations, while Menidia Hg was most related to water column MeHg, reflecting differing feeding modes between the species. For both species, dissolved MeHg was most related to tissue concentrations, with sediment Hg concentrations influential at contaminated sites. The models considering only uncontaminated sites showed reduced influence of bulk sediment MeHg for both species, but Fundulus retained sediment drivers at some sites, with dissolved MeHg still highly correlated for both. Dissolved organic carbon (DOC), chlorophyll, land use, and other ancillary variables were of lesser importance in driving bioaccumulation, though DOC was strongly related within some clusters, likely in relation to dissolved Hg. Land use, though not of primary importance, showed relationships opposite to those observed in freshwater, with development positively correlated and forests and agriculture negatively correlated with tissue concentrations across clusters and species. Clusters were composed of sites from geographically distinct systems, indicating the greater importance of small scale drivers of MeHg formation and uptake into the food web over system or region-wide influences.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Estuarios , Peces , Cadena Alimentaria , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis
9.
Water Res ; 190: 116684, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33310435

RESUMEN

Mercury (Hg) is a global and persistent pollutant which can be methylated to more toxic forms (methylmercury; MeHg) in natural systems. Both forms pose a health risk to humans and wildlife, and exposure often begins in aquatic environments. Therefore, quantifying aquatic concentrations and identifying source pathways is important for understanding biotic exposure. In this study, data from estuaries in the Northeast United States were combined to evaluate how point source contamination impacts the concentration and source dynamics of water column total and MeHg with an emphasis on sediment versus non-sediment sources. Partial least squares regression models were implemented to identify a set of variables most related to water column MeHg and total Hg (HgT) across the estuaries. The main findings suggest that contaminated sites have strong internal recycling of HgT that dominates over external inputs, and this leads to elevated concentrations of HgT and MeHg in the local water columns. However, HgT sources in uncontaminated estuarine systems have a strong connection to the local watershed with dissolved HgT linked to dissolved organic carbon, and particulate HgT linked to watershed land use and estuarine mixing. There was little correlative evidence that water column MeHg concentrations were linked to sediment in such systems, but unlike HgT, the concentrations were also not clearly linked to the watershed. Instead, in situ methylation of dissolved water column HgT appeared to dominate the MeHg source pathway. The results suggest that Hg point-source contaminated sites should be considered independently from non-contaminated sites in terms of management, and that land use plays an important indirect role in coastal MeHg dynamics.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Carbono , Monitoreo del Ambiente , Estuarios , Humanos , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis
10.
Environ Pollut ; 268(Pt B): 115510, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221612

RESUMEN

Estuaries provide critical habitat for food webs supporting fish and shellfish consumed by humans, but estuarine ecosystem health has been threatened by increases in nitrogen loading as well as inputs of the neurotoxin, mercury (Hg), which biomagnifies in food webs and poses risk to humans and wildlife. In this study, the effects of nutrient loading on the fate of Hg in shallow coastal estuaries were examined to evaluate if their interaction enhances or reduces Hg bioavailability in sediments, the water column, and concentrations in lower trophic level fish (Fundulus heteroclitus and Menidia menidia). Multiple sites were sampled within two human impacted coastal lagoons, Great South Bay (GSB) and Jamaica Bay (JB), on the southern coast of Long Island, NY, United States of America (U.S.A.). Carbon (C), nitrogen (N), sulfur (S), Hg, and methylmercury (MeHg) were measured in surface sediments and the water column, and total Hg (THg) was measured in two species of forage fish. Minimal differences were found in dissolved and particulate Hg, dissolved organic carbon (DOC), and salinity between the two bays. Across lagoons, concentrations of chlorophyll-a were correlated with total suspended solids (TSS), and water column THg and MeHg was largely associated with the particulate fraction. Methylmercury concentrations in particulates decreased with increasing TSS and chlorophyll-a, evidence of biomass dilution of MeHg with increasing productivity at the base of the food chain. Water column Hg was associated with THg concentrations in Atlantic silversides, while mummichog THg concentrations were related to sediment concentrations, reflecting their different feeding strategies. Finally, higher nutrient loading (lower C:N in sediments) while related to lower particulate concentrations coincided with higher bioaccumulation factors (BAF) for Hg in both fish species. Thus, in shallow coastal lagoons, increased nutrient loading resulted in decreased Hg concentrations at the base of the food web but resulted in greater bioaccumulation of Hg to fish relative to its availability in algal food.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Estuarios , Peces , Cadena Alimentaria , Humanos , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Nutrientes , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Technol ; 54(14): 8779-8790, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32633494

RESUMEN

We conducted a national-scale assessment of mercury (Hg) bioaccumulation in aquatic ecosystems, using dragonfly larvae as biosentinels, by developing a citizen-science network to facilitate biological sampling. Implementing a carefully designed sampling methodology for citizen scientists, we developed an effective framework for a landscape-level inquiry that might otherwise be resource limited. We assessed the variation in dragonfly Hg concentrations across >450 sites spanning 100 United States National Park Service units and examined intrinsic and extrinsic factors associated with the variation in Hg concentrations. Mercury concentrations ranged between 10.4 and 1411 ng/g dry weight across sites and varied among habitat types. Dragonfly total Hg (THg) concentrations were up to 1.8-fold higher in lotic habitats than in lentic habitats and 37% higher in waterbodies with abundant wetlands along their margins than those without wetlands. Mercury concentrations in dragonflies differed among families but were correlated (r2 > 0.80) with each other, enabling adjustment to a consistent family to facilitate spatial comparisons among sampling units. Dragonfly THg concentrations were positively correlated with THg concentrations in both fish and amphibians from the same locations, indicating that dragonfly larvae are effective indicators of Hg bioavailability in aquatic food webs. We used these relationships to develop an integrated impairment index of Hg risk to aquatic ecosytems and found that 12% of site-years exceeded high or severe benchmarks of fish, wildlife, or human health risk. Collectively, this continental-scale study demonstrates the utility of dragonfly larvae for estimating the potential mercury risk to fish and wildlife in aquatic ecosystems and provides a framework for engaging citizen science as a component of landscape Hg monitoring programs.


Asunto(s)
Mercurio , Odonata , Contaminantes Químicos del Agua , Animales , Bioacumulación , Ecosistema , Monitoreo del Ambiente , Peces , Cadena Alimentaria , Larva , Mercurio/análisis , Parques Recreativos , Estados Unidos , Contaminantes Químicos del Agua/análisis
12.
Arch Environ Contam Toxicol ; 78(4): 604-621, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32047945

RESUMEN

Methylmercury (MeHg) is a neurotoxic pollutant that bioaccumulates and biomagnifies in aquatic food webs, impacting the health of piscivorous wildlife and human consumers of predatory fish. While fish mercury levels have been correlated with various biotic and abiotic factors, many studies only measure adults to characterize the health of locally fished populations, omitting information about how local fish bioaccumulate mercury relative to their growth. In this study, we sought to establish length: total mercury (THg) concentration relationships in juvenile and adult fish of four genera (sunfish, yellow perch, white perch, and killifish) across six freshwater pond systems of Nantucket Island to determine safe consumption sizes across species and environmental conditions. A wide length range (2-21 cm) was utilized to develop linear regression models of ln-THg versus fish length. In most cases, different genera within the same pond indicated similar slopes, supporting that all four genera share comparable features of feeding and growth. Comparing individual species across ponds, differences in ln-THg versus fish length were attributable to known environmental Hg-modulators including surface water MeHg levels, pH, and watershed area. Referencing human health and wildlife criteria, our results confirm that numerous Nantucket freshwater ecosystems contain elevated fish THg levels, which could impact the health of not only piscivorous wildlife in all measured ponds but also recreational fishers in at least two measured systems. Future studies should measure THg levels across juvenile and adult fish to detect potential differences in the slope of THg concentration across fish length relevant for local consumption advice.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Peces/crecimiento & desarrollo , Agua Dulce/química , Compuestos de Metilmercurio/análisis , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/análisis , Adulto , Animales , Ecosistema , Peces/metabolismo , Cadena Alimentaria , Contaminación de Alimentos/análisis , Humanos , Islas , Massachusetts , Estanques/química
13.
Ecotoxicology ; 29(10): 1659-1672, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31883061

RESUMEN

Mercury (Hg) is a toxic pollutant, widespread in northeastern US ecosystems. Resource managers' efforts to develop fish consumption advisories for humans and to focus conservation efforts for fish-eating wildlife are hampered by spatial variability. Dragonfly larvae can serve as biosentinels for Hg given that they are widespread in freshwaters, long-lived, exhibit site fidelity, and bioaccumulate relatively high mercury concentrations, mostly as methylmercury (88% ± 11% MeHg in this study). We sampled lake water and dragonfly larvae in 74 northeastern US lakes that are part of the US EPA Long-Term Monitoring Network, including 45 lakes in New York, 43 of which are in the Adirondacks. Aqueous dissolved organic carbon (DOC) and total Hg (THg) were strongly related to MeHg in lake water. Dragonfly larvae total mercury ranged from 0.016-0.918 µg/g, dw across the study area; Adirondack lakes had the minimum and maximum concentrations. Aqueous MeHg and dragonfly THg were similar between the Adirondack and Northeast regions, but a majority of lakes within the highest quartile of dragonfly THg were in the Adirondacks. Using landscape, lake chemistry, and lake morphometry data, we evaluated relationships with MeHg in lake water and THg in dragonfly larvae. Lakewater DOC and lake volume were strong predictors for MeHg in water. Dragonfly THg Bioaccumulation Factors (BAFs, calculated as [dragonfly THg]:[aqueous MeHg]) increased as lake volume increased, suggesting that lake size influences Hg bioaccumulation or biomagnification. BAFs declined with increasing DOC, supporting a potential limiting effect for MeHg bioavailability with higher DOC.


Asunto(s)
Monitoreo del Ambiente , Mercurio/análisis , Odonata , Contaminantes Químicos del Agua/análisis , Animales , Bioacumulación , Ecosistema , Peces , Cadena Alimentaria , Lagos , Larva , Compuestos de Metilmercurio , New York
14.
Environ Sci Technol ; 53(24): 14670-14678, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31738529

RESUMEN

Acclimation increases tolerance to stress in individuals but is assumed to contribute fitness costs when the stressor is absent, though data supporting this widely held claim are sparse. Therefore, using clonal (i.e., genetically identical) cultures of Daphnia pulex, we isolated the contributions of acclimation to the regulation of the metal response gene, metallothionein 1 (MT1), and defined the reproductive benefits and costs of cadmium (Cd)-acclimation. Daphnia pulex were exposed for 50 parthenogenetic generations to environmentally realistic levels (1 µg Cd/L), and tolerance to Cd and other metals assessed during this period via standard toxicity tests. These tests revealed (1) increased tolerance to Cd compared to genetically identical nonacclimated cultures, (2) fitness costs in Cd-acclimated Daphnia when Cd was removed, and (3) cross-tolerance of Cd-acclimated Daphnia to zinc and silver, but not arsenic, thereby defining a functional role for metallothionein. Indeed, Cd-acclimated clones had significantly higher expression of MT1 mRNA than nonacclimated clones, when Cd exposed. Both the enhanced induction of MT1 and tolerant phenotype were rapidly lost when Cd was removed (1-2 generations), which is further evidence of acclimation costs. These findings provide evidence for the widely held view that acclimation is costly and are important for investigating evolutionary principles of genetic assimilation and the survival mechanisms of natural populations that face changing environments.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Aclimatación , Animales , Cadmio , Metalotioneína
15.
Artículo en Inglés | MEDLINE | ID: mdl-31527512

RESUMEN

Arsenic is a naturally occurring toxic metalloid that has many human health implications. Its strong prevalence in the bedrock and thus much of the well water in New England puts many private well owners at risk. It is also found in food products, particularly those that contain rice. Despite the documented health risks, arsenic is not high on the list of concerns for residents of the region. This study will describe two types of environmental communication efforts that have been undertaken by the Dartmouth Toxic Metals Superfund Research Program (DTMSRP)-the development and evaluation of a comprehensive website, Arsenic and You, and a mental models research approach to better understand the disconnect between expert and community perceptions of arsenic risk. We find that there are knowledge gaps between the two, particularly regarding the origin of arsenic in drinking water and food, the necessity of testing well water, and the process for treating water that is above recommended limits. Moreover, the mental models approach provides a structured framework for better understanding these gaps. A website can address some of these disconnects, and it is important to have a "one-stop shop" for vetted information on the risks and steps to reduce exposure.


Asunto(s)
Arsénico , Comunicación en Salud , Contaminantes Químicos del Agua , Agua Potable , Contaminación de Alimentos , Humanos , New England , Medición de Riesgo , Purificación del Agua , Pozos de Agua
16.
Ecotoxicology ; 28(8): 949-963, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31410744

RESUMEN

The bioaccumulation of the neurotoxin methylmercury (MeHg) in freshwater ecosystems is thought to be mediated by both water chemistry (e.g., dissolved organic carbon [DOC] and dissolved mercury [Hg]) and diet (e.g., trophic position and diet composition). Hg in small streams is of particular interest given their role as a link between terrestrial and aquatic processes. Terrestrial processes determine the quantity and quality of streamwater DOC, which in turn influence the quantity and bioavailability of dissolved MeHg. To better understand the effects of water chemistry and diet on Hg bioaccumulation in stream biota, we measured DOC and dissolved Hg in stream water and mercury concentration in three benthic invertebrate taxa and three fish species across up to 12 tributary streams in a forested watershed in New Hampshire, USA. As expected, dissolved total mercury (THg) and MeHg concentrations increased linearly with DOC. However, mercury concentrations in fish and invertebrates varied non-linearly, with maximum bioaccumulation at intermediate DOC concentrations, which suggests that MeHg bioavailability may be reduced at high levels of DOC. Further, MeHg and THg concentrations in invertebrates and fish, respectively, increased with δ15N (suggesting trophic position) but were not associated with δ13C. These results show that even though MeHg in water is strongly determined by DOC concentrations, mercury bioaccumulation in stream food webs is the result of both MeHg availability in stream water and trophic position.


Asunto(s)
Bioacumulación , Peces/metabolismo , Invertebrados/metabolismo , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Ríos/química , Animales , Dieta , Cadena Alimentaria , Sustancias Húmicas/análisis , New Hampshire
17.
Sci Total Environ ; 687: 907-916, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31412494

RESUMEN

Mercury (Hg) is a global contaminant that poses a human health risk in its organic form, methylmercury (MeHg), through consumption of fish and fishery products. Bioaccumulation of Hg in the aquatic environment is controlled by a number of factors expected to be altered by climate change. We examined the individual and combined effects of temperature, sediment organic carbon, and salinity on the bioaccumulation of MeHg in an estuarine amphipod, Leptocheirus plumulosus, when exposed to sediment from two locations in the Gulf of Maine (Kittery and Bass Harbor) that contained different levels of MeHg and organic carbon. Higher temperatures and lower organic carbon levels individually increased uptake of MeHg by L. plumulosus as measured by the biota-sediment accumulation factor (BSAF), while the effect of salinity on BSAF differed by sediment source. Multi-factor statistical modeling using all data revealed a significant interaction between temperature and organic carbon for both sediments, in which increased temperature had a negative effect on BSAF at the lowest carbon levels and a positive effect at higher levels. Our results suggest that increased temperature and carbon loading, of a magnitude expected as a result from climate change, could be associated with a net decrease in amphipod BSAF of 50 to 71%, depending on sediment characteristics. While these are only first-order projections, our results indicate that the future fate of MeHg in marine food webs is likely to depend on a number of factors beyond Hg loading.


Asunto(s)
Anfípodos/metabolismo , Monitoreo del Ambiente , Compuestos de Metilmercurio/metabolismo , Salinidad , Temperatura , Contaminantes Químicos del Agua/metabolismo , Animales , Carbono , Estuarios , Cadena Alimentaria , Sedimentos Geológicos/química
18.
Ecotoxicology ; 27(10): 1341-1352, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30315417

RESUMEN

Studies of mercury (Hg) in the Mediterranean Sea have focused on pollution sources, air-sea mercury exchange, abiotic mercury cycling, and seafood. Much less is known about methylmercury (MeHg) concentrations in the lower food web. Zooplankton and small fish were sampled from the neuston layer at both coastal and open sea stations in the Mediterranean Sea during three cruise campaigns undertaken in the fall of 2011 and the summers of 2012 and 2013. Zooplankton and small fish were sorted by morphospecies, and the most abundant taxa (e.g. euphausiids, isopods, hyperiid amphipods) analyzed for methylmercury (MeHg) concentration. Unfiltered water samples were taken during the 2011 and 2012 cruises and analyzed for MeHg concentration. Multiple taxa suggested elevated MeHg concentrations in the Tyrrhenian and Balearic Seas in comparison with more eastern and western stations in the Mediterranean Sea. Spatial variation in zooplankton MeHg concentration is positively correlated with single time point whole water MeHg concentration for euphausiids and mysids and negatively correlated with maximum chlorophyll a concentration for euphausiids, mysids, and "smelt" fish. Taxonomic variation in MeHg concentration appears driven by taxonomic grouping and feeding mode. Euphausiids, due to their abundance, relative larger size, importance as a food source for other fauna, and observed relationship with surface water MeHg are a good candidate biotic group to evaluate for use in monitoring the bioavailability of MeHg for trophic transfer in the Mediterranean and potentially globally.


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Mar Mediterráneo
19.
Environ Health Perspect ; 126(8): 84503, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30235424

RESUMEN

The diet is emerging as the dominant source of arsenic exposure for most of the U.S. population. Despite this, limited regulatory efforts have been aimed at mitigating exposure, and the role of diet in arsenic exposure and disease processes remains understudied. In this brief, we discuss the evidence linking dietary arsenic intake to human disease and discuss challenges associated with exposure characterization and efforts to quantify risks. In light of these challenges, and in recognition of the potential longer-term process of establishing regulation, we introduce a framework for shorter-term interventions that employs a field-to-plate food supply chain model to identify monitoring, intervention, and communication opportunities as part of a multisector, multiagency, science-informed, public health systems approach to mitigation of dietary arsenic exposure. Such an approach is dependent on coordination across commodity producers, the food industry, nongovernmental organizations, health professionals, researchers, and the regulatory community. https://doi.org/10.1289/EHP3997.


Asunto(s)
Arsénico/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/efectos adversos , Dieta/efectos adversos , Contaminación de Alimentos/análisis , Humanos , Medición de Riesgo
20.
Environ Sci Technol ; 52(17): 9556-9561, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30067020

RESUMEN

Mercury is a global pollutant released into the biosphere by varied human activities including coal combustion, mining, artisanal gold mining, cement production, and chemical production. Once released to air, land and water, the addition of carbon atoms to mercury by bacteria results in the production of methylmercury, the toxic form that bioaccumulates in aquatic and terrestrial food chains resulting in elevated exposure to humans and wildlife. Global recognition of the mercury contamination problem has resulted in the Minamata Convention on Mercury, which came into force in 2017. The treaty aims to protect human health and the environment from human-generated releases of mercury curtailing its movement and transformations in the biosphere. Coincident with the treaty's coming into force, the 13th International Conference of Mercury as a Global Pollutant (ICMGP-13) was held in Providence, Rhode Island USA. At ICMGP-13, cutting edge research was summarized and presented to address questions relating to global and regional sources and cycling of mercury, how that mercury is methylated, the effects of mercury exposure on humans and wildlife, and the science needed for successful implementation of the Minamata Convention. Human activities have the potential to enhance mercury methylation by remobilizing previously released mercury, and increasing methylation efficiency. This synthesis concluded that many of the most important factors influencing the fate and effects of mercury and its more toxic form, methylmercury, stem from environmental changes that are much broader in scope than mercury releases alone. Alterations of mercury cycling, methylmercury bioavailability and trophic transfer due to climate and land use changes remain critical uncertainties in effective implementation of the Minamata Convention. In the face of these uncertainties, important policy and management actions are needed over the short-term to support the control of mercury releases to land, water and air. These include adequate monitoring and communication on risk from exposure to various forms of inorganic mercury as well as methylmercury from fish and rice consumption. Successful management of global and local mercury pollution will require integration of mercury research and policy in a changing world.


Asunto(s)
Contaminantes Ambientales , Mercurio , Compuestos de Metilmercurio , Animales , Contaminación Ambiental , Humanos , Rhode Island
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA