Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(36): 8213-8220, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37672646

RESUMEN

Synergistic therapy combining photothermal therapy and photodynamic therapy is considered to be a promising approach to treat cancer, but the precise temperature control of deep tissue remains a great challenge in achieving effective treatment. Herein, a two-dimensional Bi2WO6:Nd3+/Yb3+/Er3+@MoS2 nanoplatform with photothermal and photodynamic functions was constructed, where semiconductor MoS2 serves as both a photothermal agent and a photosensitizer. The photothermal conversion performance and the reactive oxygen species generation capacity of the nanoplatform were validated under the irradiation of 808 nm laser; meanwhile, the two sets of luminescence intensity ratios (IYb3+/INd3+ and IEr3+/INd3+) in the biological window region were selected as near-infrared temperature probes to monitor the heat generated during the photosynergistic process in real time. The feasibility of nanoplatform as an intratissue temperature probe and antibacterial agent was further assessed by vitro experiments, which provides an idea for designing multifunctional photosynergistic therapy nanoplatform.


Asunto(s)
Molibdeno , Fotoquimioterapia , Antibacterianos/farmacología , Calor , Luminiscencia
2.
Inorg Chem ; 61(49): 20035-20042, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36427263

RESUMEN

Based on luminescence intensity ratio (LIR) technology, the noncontact upconversion (UC) optical temperature sensor has aroused a great deal of interest due to its great application prospects in some extreme environments. However, most of the studies focused on improving its sensitivity due to the fact that the sensitivity can be influenced by many external field factors, such as the power density and pulse width of pumping sources or temperature. Herein, a green-emitting UC phosphor Sr2InF7: Yb3+, Er3+ was developed as a potential thermometer, which retained bright green emission under 980 nm excitation with different pulse widths and power densities or at different temperatures; the possible mechanisms are discussed in detail. Its sensitivity almost remained constant when using both continuous wave (c.w.) and pulsed laser or different power densities, which meant the sensitivity of Sr2InF7: Yb3+, Er3+ was independent of the characteristics of pumping laser. A flexible thin-film thermometer composed of Sr2InF7: 2%Yb3+, 2%Er3+ was also fabricated to detect the temperature of microelectronic components, which can not only accurately measure the temperature of the working electronic circuit board but also exhibit excellent repeatability. The results indicated that the present noncontact UC temperature sensor showed stable green emission and thermometric sensitivity as well as the possibility of replacing the traditional thermometers.


Asunto(s)
Luz , Luminiscencia , Temperatura , Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...