Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 277: 116365, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657452

RESUMEN

Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1ß, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Epigénesis Genética , Hipocampo , Plomo , Manganeso , Trastornos de la Memoria , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Epigénesis Genética/efectos de los fármacos , Manganeso/toxicidad , Plomo/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Trastornos de la Memoria/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína Fosfatasa 2/metabolismo , Aprendizaje/efectos de los fármacos
2.
Nanotechnology ; 34(50)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732948

RESUMEN

This Focus aims at showcasing the significance of manipulating atomic and molecular layers for various applications. To this end, this Focus collects 15 original research papers featuring the applications of atomic layer deposition, chemical vapor deposition, wet chemistry, and some other methods for manipulations of atomic and molecular layers in lithium-ion batteries, supercapacitors, catalysis, field-effect transistors, optoelectronics, and others.

3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(6): 488-493, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37340916

RESUMEN

Objective To investigate the molecular mechanism of taurine regulating the polarization of M2 macrophages by mitophagy. Methods THP-1 cells were divided into four groups: M0 group (THP-1 cells were treated by 100 nmol/L phorbol myristate ester for 48 hours to polarize into M0), M2 group (THP-1 cells were induced to polarize into M2 macrophages by 20 ng/mL interferon-4 (IL-4) for 48 hours), M2 combined with taurine groups (added with 40 or 80 mmol/L taurine on the basis of M2 macrophages). The mRNA expression of mannose receptor C type 1(MRC-1), C-C motif chemokine ligand 22(CCL22) and dendritic cell-specific ICAM-3 grabbing non-integrin (CD209) in M2 macrophages were detected by quantitative real-time PCR. Mitochondrial and lysosome probes were used to detect the number of mitochondria and lysosomes by multifunction microplate reader and confocal laser scanning microscope. The level of mitochondrial membrane potential (MMP) was detected by JC-1 MMP assay kit. The expression of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3) were detected by Western blot analysis. Results Compared with M0 group, the expression of MRC-1, CCL22, CD209 and PINK1, the number of mitochondria and the level of MMP in M2 group were significantly increased, whereas the number of lysosomes and LC3II/LC3I ratio were decreased. Compared with M2 group, the expressions of MRC-1, CCL22 and CD209, the number of mitochondria and the level of MMP in M2 combined with taurine group dropped significantly while the number of lysosomes was found increased, and the protein expression of PINK1 and LC3II/LC3I ratio were also increased. Conclusions The polarization of M2 macrophages is regulated by taurine to prevent excessive polarization via reducing the level of MMP, improving the level of mitophagy, reducing the number of mitochondria, and inhibiting the mRNA expression of polarization markers in M2 macrophages.


Asunto(s)
Mitofagia , Taurina , Macrófagos/metabolismo , Proteínas Quinasas/metabolismo , ARN Mensajero
4.
J Nutr Biochem ; 117: 109321, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36963730

RESUMEN

Impaired glucose regulation is one of the most important risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which have become a major public health issue worldwide. Dysregulation of carbohydrate metabolism in liver has been shown to play a critical role in the development of glucose intolerance but the molecular mechanism has not yet been fully understood. In this study, we investigated the role of hepatic LCMT1 in the regulation of glucose homeostasis using a liver-specific LCMT1 knockout mouse model. The hepatocyte-specific deletion of LCMT1 significantly upregulated the hepatic glycogen synthesis and glycogen accumulation in liver. We found that the liver-specific knockout of LCMT1 improved high fat diet-induced glucose intolerance and insulin resistance. Consistently, the high fat diet-induced downregulation of glucokinase (GCK) and other important glycogen synthesis genes were reversed in LCMT1 knockout liver. In addition, the expression of GCK was significantly upregulated in MIHA cells treated with siRNA targeting LCMT1 and improved glycogen synthesis. In this study, we provided evidences to support the role of hepatic LCMT1 in the development of glucose intolerance induced by high fat diet and demonstrated that inhibiting LCMT1 could be a novel therapeutic strategy for the treatment of glucose metabolism disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Resistencia a la Insulina , Proteína O-Metiltransferasa , Ratones , Animales , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Dieta Alta en Grasa/efectos adversos , Leucina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Metiltransferasas/metabolismo , Proteína O-Metiltransferasa/metabolismo
5.
Cancer Immunol Immunother ; 72(6): 1951-1956, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36651967

RESUMEN

BACKGROUND: Immune checkpoint inhibitors have transformed the treatment landscape of cancer treatment, but only a fraction of patients responds to treatment, leading to an increasing effort to repurpose clinically approved medications to augment ICI therapy. Metformin has been associated with improved survival outcomes in patients undergoing conventional chemotherapy. However, whether metformin provides survival benefits in patients receiving immune checkpoint inhibitors (ICIs) is unknown. METHODS: We performed a retrospective cohort study at two tertiary referral centers in Taiwan. All adult diabetes mellitus patients who were treated with ICIs between January 2015 and December 2021 were included. The primary and secondary outcomes were overall survival (OS) and progression-free survival (PFS), respectively. RESULTS: In total, 878 patients were enrolled in our study, of which 86 patients used metformin and 78 patients used non-metformin diabetes medications. Compared with non-users, metformin users had a longer median OS (15.4 [IQR 5.6-not reached] vs. 6.1 [IQR, 0.8-21.0] months, P = 0.003) and PFS (5.1 [IQR 2.0-14.3] vs. 1.9 [IQR 0.7-8.6] months, P = 0.041). In a univariate Cox proportional hazard analysis, the use of metformin was associated with a reduction in the risk of mortality (HR: 0.53 [95% confidence interval: 0.35-0.81], P = 0.004) and disease progression (HR: 0.69 [95% CI 0.49-0.99], P = 0.042). The use of metformin remained associated with a lower risk of mortality after adjusting for baseline variables such as age, cancer stage, and underlying comorbidities (OS, HR: 0.55 [95% CI 0.34-0.87], P = 0.011). Similarly, the use of metformin was associated with a lower risk of disease progression. Importantly, the use of metformin before ICI initiation was not associated with a reduction in mortality (HR: 0.61 [95% CI 0.27-1.42], P = 0.25) or disease progression (HR: 0.69 [95% CI 0.33-1.43], P = 0.32). CONCLUSION: The use of metformin is associated with survival benefits in patients undergoing immunotherapy. Prospective clinical trials are warranted to define the role of metformin in augmenting immunotherapy.


Asunto(s)
Metformina , Adulto , Humanos , Metformina/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Retrospectivos , Estudios Prospectivos , Progresión de la Enfermedad
6.
Transl Oncol ; 27: 101572, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36401967

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most malignant type of cancers. Leuci carboxyl methyltransferase 1 (LCMT1) is a protein methyltransferase that plays an improtant regulatory role in both normal and cancer cells. The aim of this study is to evaluate the expression pattern and clinical significance of LCMT1 in HCC. METHODS: The expression pattern and clinical relevance of LCMT1 were determined using the Gene Expression Omnibus (GEO) database, the Cancer Genome Atlas (TCGA) program, and our datasets. Gain-of-function and loss-of-function studies were employed to investigate the cellular functions of LCMT1 in vitro and in vivo. Quantitative real-time polymerase chain reaction (RT-PCR) analysis, western blotting, enzymatic assay, and high-performance liquid chromatography were applied to reveal the underlying molecular functions of LCMT1. RESULTS: LCMT1 was upregulated in human HCC tissues, which correlated with a "poor" prognosis. The siRNA-mediated knockdown of LCMT1 inhibited glycolysis, promoted mitochondrial dysfunction, and increased intracellular pyruvate levels by upregulating the expression of alani-neglyoxylate and serine-pyruvate aminotransferase (AGXT). The overexpression of LCMT1 showed the opposite results. Silencing LCMT1 inhibited the proliferation of HCC cells in vitro and reduced the growth of tumor xenografts in mice. Mechanistically, the effect of LCMT1 on the proliferation of HCC cells was partially dependent on PP2A. CONCLUSIONS: Our data revealed a novel role of LCMT1 in the proliferation of HCC cells. In addition, we provided novel insights into the effects of glycolysis-related pathways on the LCMT1regulated progression of HCC, suggesting LCMT1 as a novel therapeutic target for HCC therapy.

7.
Heart ; 109(6): 470-477, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36351793

RESUMEN

OBJECTIVES: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce heart failure (HF) in at-risk patients and may possess antitumour effects. We examined the effect of SGLT2i on HF and mortality among patients with cancer and diabetes. METHODS: This was a retrospective propensity score-matched cohort study involving adult patients with type 2 diabetes mellitus diagnosed with cancer between January 2010 and December 2021. The primary outcomes were hospitalisation for incident HF and all-cause mortality. The secondary outcomes were serious adverse events associated with SGLT2i. RESULTS: From a total of 8640 patients, 878 SGLT2i recipients were matched to non-recipients. During a median follow-up of 18.8 months, SGLT2i recipients had a threefold lower rate of hospitalisation for incident HF compared with non-SGLT2i recipients (2.92 vs 8.95 per 1000 patient-years, p=0.018). In Cox regression and competing regression models, SGLT2i were associated with a 72% reduction in the risk of hospitalisation for HF (HR 0.28 (95% CI: 0.11 to 0.77), p=0.013; subdistribution HR 0.32 (95% CI: 0.12 to 0.84), p=0.021). The use of SGLT2i was also associated with a higher overall survival (85.3% vs 63.0% at 2 years, p<0.001). The risk of serious adverse events such as hypoglycaemia and sepsis was similar between the two groups. CONCLUSIONS: The use of SGLT2i was associated with a lower rate of incident HF and prolonged overall survival in patients with cancer with diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Neoplasias , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Humanos , Estudios de Cohortes , Estudios Retrospectivos , Glucosa , Sodio
8.
Sensors (Basel) ; 22(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36015858

RESUMEN

This brief presents an analog front-end (AFE) for the detection of electroencephalogram (EEG) signals. The AFE is composed of four sections, chopper-stabilized amplifiers, ripple suppression circuit, RRAM-based lowpass FIR filter, and 8-bit SAR ADC. This is the first time that an RRAM-based lowpass FIR filter has been introduced in an EEG AFE, where the bio-plausible characteristics of RRAM are utilized to analyze signals in the analog domain with high efficiency. The preamp uses the symmetrical OTA structure, reducing power consumption while meeting gain requirements. The ripple suppression circuit greatly improves noise characteristics and offset voltage. The RRAM-based low-pass filter achieves a 40 Hz cutoff frequency, which is suitable for the analysis of EEG signals. The SAR ADC adopts a segmented capacitor structure, effectively reducing the capacitor switching power consumption. The chip prototype is designed in 40 nm CMOS technology. The overall power consumption is approximately 13 µW, achieving ultra-low-power operation.


Asunto(s)
Amplificadores Electrónicos , Electroencefalografía , Análisis de Secuencia por Matrices de Oligonucleótidos , Procesamiento de Señales Asistido por Computador
9.
Nanomaterials (Basel) ; 11(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34685134

RESUMEN

In this study, we demonstrate the visible-light-assisted photoelectrochemical (PEC) biosensing of uric acid (UA) by using graphene oxide nanoribbons (GONRs) as PEC electrode materials. Specifically, GONRs with controlled properties were synthesized by the microwave-assisted exfoliation of multi-walled carbon nanotubes. For the detection of UA, GONRs were adopted to modify either a screen-printed carbon electrode (SPCE) or a glassy carbon electrode (GCE). Cyclic voltammetry analyses indicated that all Faradaic currents of UA oxidation on GONRs with different unzipping/exfoliating levels on SPCE increased by more than 20.0% under AM 1.5 irradiation. Among these, the GONRs synthesized under a microwave power of 200 W, namely GONR(200 W), exhibited the highest increase in Faradaic current. Notably, the GONR(200 W)/GCE electrodes revealed a remarkable elevation (~40.0%) of the Faradaic current when irradiated by light-emitting diode (LED) light sources under an intensity of illumination of 80 mW/cm2. Therefore, it is believed that our GONRs hold great potential for developing a novel platform for PEC biosensing.

10.
Opt Express ; 29(15): 23810-23821, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614639

RESUMEN

We theoretically propose a nonplasmonic optical refractive index sensor based on black phosphorus (BP) and other dielectric materials in the infrared band. Due to the anisotropic property of BP, the proposed sensor can achieve alternative sensitivity and figure of merit (FOM) in its different crystal directions. The high sensitivity and FOM are attributed to the strong magnetic resonance in the all-dielectric configuration. The coupled-mode theory (CMT) is used to verify the simulation results and reveal the physical mechanism. Furthermore, influences of the sample and the incident angle on the performance of the sensor are also discussed. Our design utilizes a simple dielectric structure with a BP monolayer, which exhibits great potential for the future high-performance sensor with low cost.

11.
Front Immunol ; 12: 648913, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912173

RESUMEN

The excessive M1 polarization of macrophages drives the occurrence and development of inflammatory diseases. The reprogramming of macrophages from M1 to M2 can be achieved by targeting metabolic events. Taurine promotes for the balance of energy metabolism and the repair of inflammatory injury, preventing chronic diseases and complications. However, little is known about the mechanisms underlying the action of taurine modulating the macrophage polarization phenotype. In this study, we constructed a low-dose LPS/IFN-γ-induced M1 polarization model to simulate a low-grade pro-inflammatory process. Our results indicate that the taurine transporter TauT/SlC6A6 is upregulated at the transcriptional level during M1 macrophage polarization. The nutrient uptake signal on the membrane supports the high abundance of taurine in macrophages after taurine supplementation, which weakens the status of methionine metabolism, resulting in insufficient S-adenosylmethionine (SAM). The low availability of SAM is directly sensed by LCMT-1 and PME-1, hindering PP2Ac methylation. PP2Ac methylation was found to be necessary for M1 polarization, including the positive regulation of VDAC1 and PINK1. Furthermore, its activation was found to promote the elimination of mitochondria by macrophages via the mitophagy pathway for metabolic adaptation. Mechanistically, taurine inhibits SAM-dependent PP2Ac methylation to block PINK1-mediated mitophagy flux, thereby maintaining a high mitochondrial density, which ultimately hinders the conversion of energy metabolism to glycolysis required for M1. Our findings reveal a novel mechanism of taurine-coupled M1 macrophage energy metabolism, providing novel insights into the occurrence and prevention of low-grade inflammation, and propose that the sensing of taurine and SAM availability may allow communication to inflammatory response in macrophages.


Asunto(s)
Glucólisis/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Mitofagia/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , S-Adenosilmetionina/metabolismo , Taurina/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Activación de Macrófagos/inmunología , Macrófagos/clasificación , Macrófagos/inmunología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Metilación/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Células THP-1 , Taurina/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
12.
ACS Nano ; 14(12): 17606-17614, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33211966

RESUMEN

Graphene Hall elements (GHEs) have been demonstrated to be promising magnetic field sensors with excellent sensitivity, linearity, temperature stability, and compatibility with complementary-metal-oxide-semiconductor (CMOS)-integrated circuits (ICs). However, the demonstrated GHEs have still not exhibited a comprehensive advantage in performance over commercial integrated Hall sensors which were implemented in integrated Hall element and CMOS processing ICs. In this work, we develop a technology for the three-dimensional (3D) heterogeneous integration of silicon-based CMOS ICs and GHEs, and the fabricated magnetic field sensors outperform commercial high-end integrated Hall sensors. Specifically, the integrated Hall sensors are implemented in a stacked integration on Si based on a chopper programmable-gain amplifier (CPGA), a chopper-stabilized second-order sigma-delta modulator (CSDM), and graphene-based Hall elements on monochips. GHEs with high sensitivity (up to 1000 A/VT) are fabricated with a compatible process on a smoothened silicon nitride passivation layer of silicon-based CMOS ICs, and the two device layers are connected by an interlayer. The heterogeneous integrated Hall ICs exhibit current and voltage magnetic sensitivities up to 64 000 A/VT and 6.12 V/VT, respectively, which are much higher than those in all other reported nanomaterial-based Hall sensors and even in high-end commercial Hall ICs. Furthermore, the 3D heterogeneous integration technology used here can be extended as a universal technology for integrating nanomaterial-based sensors and Si CMOS ICs.

13.
Nanotechnology ; 31(22): 225703, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32050176

RESUMEN

The pristine and diethylenetriamine (DETA)-doped tungsten disulfide quantum dots (WS2 QDs) with an average lateral size of about 5 nm have been synthesized using pulsed laser ablation (PLA). Introduction of the synthesized WS2 QDs on the InGaAs/AlGaAs quantum wells (QWs) can improve the photoluminescence (PL) of the InGaAs/AlGaAs QW as high as 6 fold. On the basis of the time-resolved PL and Kelvin probe measurements, the PL enhancement is attributed to the carrier transfer from the pristine or DETA-doped WS2 QDs to the InGaAs/AlGaAs QW. A heterostructure band diagram is proposed for explaining the carrier transfer, which increases the hole densities in the QW and enhances its PL intensity. This study is expected to be beneficial for the development of the InGaAs-based optoelectronic devices.

14.
Nanoscale ; 8(11): 5954-8, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26924069

RESUMEN

We report Raman scattering results for high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In the Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm(-1) and 350 cm(-1), corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition to a strong surface optical (SO) phonon mode at 329 cm(-1). The existence of the SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectra were recorded on a single ZnS NB and for the first time a SO phonon band has been detected on a single nanobelt. Different selection rules for the SO phonon mode are shown from their corresponding E1/A1 phonon modes, and were attributed to the breaking of anisotropic translational symmetry on the NB surface.

15.
Sci Rep ; 4: 5548, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24998222

RESUMEN

Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

16.
Nanoscale ; 6(5): 2624-8, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24343345

RESUMEN

Syringe-like ZnO nanorods (NRs) were fabricated on InGaN/GaN light emitting diodes (LEDs) by a hydrothermal method. Without sacrificing the electrical performances of LEDs, syringe-like NRs can enhance light extraction capability by 10.5% at 20 mA and shape the radiation profile with a view angle collimated from 136° to 121°. By performing optical experiments and simulation, it is found that the superior light extraction efficiency with a more collimated radiation pattern is attributed to the waveguiding effect of NRs and the mitigation of abrupt index change by the tapered ends of syringe-like ZnO NRs. This work demonstrates the importance of the nanostructure morphology in LED performances and provides the architecture design guidelines of nanostructures to a variety of optical devices.

17.
ACS Photonics ; 1(12): 1245-1250, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25679010

RESUMEN

We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%.

18.
ACS Nano ; 6(11): 9366-72, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23092152

RESUMEN

We in situ probed the surface band bending (SBB) by ultraviolet photoelectron spectroscopy (UPS) in conjunction with field-effect transistor measurements on the incompletely depleted ZnO nanowires (NWs). The diameter range of the NWs is ca. 150-350 nm. Several surface treatments (i.e., heat treatments and Au nanoparticle (NP) decoration) were conducted to assess the impact of the oxygen adsorbates on the SBB. A 100 °C heat treatment leads to the decrease of the SBB to 0.74 ± 0.15 eV with 29.9 ± 3.0 nm width, which is attributed to the removal of most adsorbed oxygen molecules from the ZnO NW surfaces. The SBB of the oxygen-adsorbed ZnO NWs is measured to be 1.53 ± 0.15 eV with 43.2 ± 2.0 nm width. The attachment of Au NPs to the NW surface causes unusually high SBB (2.34 ± 0.15 eV with the wide width of 53.3 ± 1.6 nm) by creating open-circuit nano-Schottky junctions and catalytically enhancing the formation of the charge O(2) adsorbates. These surface-related phenomena should be generic to all metal oxide nanostructures. Our study is greatly beneficial for the NW-based device design of sensor and optoelectronic applications via surface engineering.


Asunto(s)
Ensayo de Materiales/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Espectrofotometría Ultravioleta/métodos , Óxido de Zinc/química , Módulo de Elasticidad , Tamaño de la Partícula , Propiedades de Superficie
19.
ACS Nano ; 6(8): 6687-92, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22895153

RESUMEN

We demonstrate a novel, feasible strategy for practical application of one-dimensional photodetectors by integrating a carbon nanotube and TiO(2) in a core-shell fashion for breaking the compromise between the photogain and the response/recovery speed. Radial Schottky barriers between carbon nanotube cores and TiO(2) shells and surface states at TiO(2) shell surface regulate electron transport and also facilitate the separation of photogenerated electrons and holes, leading to ultrahigh photogain (G = 1.4 × 10(4)) and the ultrashort response/recovery times (4.3/10.2 ms). Additionally, radial Schottky junction and defect band absorption broaden the detection range (UV-visible). The concept using metallic core oxide-shell geometry with radial Schottky barriers holds potential to pave a new way to realize nanostructured photodetectors for practical use.


Asunto(s)
Microelectrodos , Nanotubos de Carbono/química , Fotometría/instrumentación , Semiconductores , Titanio/química , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Ensayo de Materiales , Nanotubos de Carbono/efectos de la radiación , Nanotubos de Carbono/ultraestructura , Tamaño de la Partícula , Titanio/efectos de la radiación
20.
ACS Nano ; 6(5): 4369-74, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22482745

RESUMEN

We demonstrated a flexible strain sensor based on ZnSnO(3) nanowires/microwires for the first time. High-resolution transmission electron microscopy indicates that the ZnSnO(3) belongs to a rhombohedral structure with an R3c space group and is grown along the [001] axis. On the basis of our experimental observation and theoretical calculation, the characteristic I-V curves of ZnSnO(3) revealed that our strain sensors had ultrahigh sensitivity, which is attributed to the piezopotential-modulated change in Schottky barrier height (SBH), that is, the piezotronic effect. The on/off ratio of our device is ∼587, and a gauge factor of 3740 has been demonstrated, which is 19 times higher than that of Si and three times higher than those of carbon nanotubes and ZnO nanowires.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA