Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 142(6): 064708, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25681936

RESUMEN

We have studied the growth of S layers adsorbed on Au(100) with low-energy electron diffraction (LEED), X-ray photoemission spectra (XPS), and scanning tunneling microscope (STM). Three phases of S/Au(100)-(2 × 2), trimer, and c(2 × 4)-are identified; the latter two are not previously reported. A dose of S2 at 300 K transformed Au(100)-(5 × 20) initially into the (2 × 2) phase and formed the c(2 × 4) phase at a saturation coverage. The STM results show that monolayer Au islands formed during the initial S dose and remained throughout the growth, resulting in a rough c(2 × 4) surface. We show that a highly ordered c(2 × 4) phase can be obtained with a flat (2 × 2) phase as an intermediate step during growth. Based on the evolution of XPS and STM images with varied S2 dose, the components of S 2p are assigned and structural models for the various S/Au(100) phases are proposed. In the (2 × 2) phase, one S atom resides on a four-fold hollow site in each (2 × 2) unit cell, corresponding to a S coverage of 0.25 ML; in the trimer phase, three S atoms form a trimer residing on a four-fold hollow site in each (2 × 2) unit cell, corresponding to a S coverage of 0.75 ML; in the c(2 × 4) phase, there are five S atoms in each primitive unit cell of c(2 × 4); three of them form a trimer residing on a four-fold hollow site, and the other two form a dimer located on the top of the trimer, corresponding to a nominal S coverage of 1.25 ML. With the proposed structural models, the growth of S on Au(100) at 300 K is described in detail.

2.
Opt Express ; 22 Suppl 7: A1862-7, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25607500

RESUMEN

A twice wafer-transfer technique can be used to fabricate high-brightness p-side-up thin-film AlGaInP-based light-emitting diodes (LEDs) with an indium-tin oxide (ITO) transparent conductive layer directly deposited on a GaP window layer, without using postannealing. The ITO layer can be used to improve light extraction, which enhances light output power. The p-side-up thin-film AlGaInP LED with an ITO layer exhibited excellent performance stability (e.g., emission wavelength and output power) as the injection current increased. This stability can be attributed to the following factors: 1) Refractive index matching, performed by introducing ITO between the epoxy and the GaP window layer enhances light extraction; and 2) The ITO layer is used as the current spreading layer to reduce the thermal accumulation in the epilayers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...