Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Virol ; 98(6): e0003824, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38767356

RESUMEN

Recent progress on chimeric antigen receptor (CAR)-NK cells has shown promising results in treating CD19-positive lymphoid tumors with minimal toxicities [including graft versus host disease (GvHD) and cytokine release syndrome (CRS) in clinical trials. Nevertheless, the use of CAR-NK cells in combating viral infections has not yet been fully explored. Previous studies have shown that CAR-NK cells expressing S309 single-chain fragment variable (scFv), hereinafter S309-CAR-NK cells, can bind to SARS-CoV-2 wildtype pseudotyped virus (PV) and effectively kill cells expressing wild-type spike protein in vitro. In this study, we further demonstrate that the S309-CAR-NK cells can bind to different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants in vitro. We also show that S309-CAR-NK cells reduce virus loads in the NOD/SCID gamma (NSG) mice expressing the human angiotensin-converting enzyme 2 (hACE2) receptor challenged with SARS-CoV-2 wild-type (strain USA/WA1/2020). Our study demonstrates the potential use of S309-CAR-NK cells for inhibiting infection by SARS-CoV-2 and for the potential treatment of COVID-19 patients unresponsive to otherwise currently available therapeutics. IMPORTANCE: Chimeric antigen receptor (CAR)-NK cells can be "off-the-shelf" products that treat various diseases, including cancer, infections, and autoimmune diseases. In this study, we engineered natural killer (NK) cells to express S309 single-chain fragment variable (scFv), to target the Spike protein of SARS-CoV-2, hereinafter S309-CAR-NK cells. Our study shows that S309-CAR-NK cells are effective against different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants. The S309-CAR-NK cells can (i) directly bind to SARS-CoV-2 pseudotyped virus (PV), (ii) competitively bind to SARS-CoV-2 PV with 293T cells expressing the human angiotensin-converting enzyme 2 (hACE2) receptor (293T-hACE2 cells), (iii) specifically target and lyse A549 cells expressing the spike protein, and (iv) significantly reduce the viral loads of SARS-CoV-2 wild-type (strain USA/WA1/2020) in the lungs of NOD/SCID gamma (NSG) mice expressing hACE2 (hACE2-NSG mice). Altogether, the current study demonstrates the potential use of S309-CAR-NK immunotherapy as an alternative treatment for COVID-19 patients.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Células Asesinas Naturales , Receptores Quiméricos de Antígenos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Carga Viral , Animales , SARS-CoV-2/inmunología , Células Asesinas Naturales/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Ratones , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , COVID-19/inmunología , COVID-19/virología , COVID-19/terapia , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Ratones SCID , Ratones Endogámicos NOD
2.
JCI Insight ; 8(13)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37261904

RESUMEN

Given the COVID-19 pandemic, there is interest in understanding ligand-receptor features and targeted antibody-binding attributes against emerging SARS-CoV-2 variants. Here, we developed a large-scale structure-based pipeline for analysis of protein-protein interactions regulating SARS-CoV-2 immune evasion. First, we generated computed structural models of the Spike protein of 3 SARS-CoV-2 variants (B.1.1.529, BA.2.12.1, and BA.5) bound either to a native receptor (ACE2) or to a large panel of targeted ligands (n = 282), which included neutralizing or therapeutic monoclonal antibodies. Moreover, by using the Barnes classification, we noted an overall loss of interfacial interactions (with gain of new interactions in certain cases) at the receptor-binding domain (RBD) mediated by substituted residues for neutralizing complexes in classes 1 and 2, whereas less destabilization was observed for classes 3 and 4. Finally, an experimental validation of predicted weakened therapeutic antibody binding was performed in a cell-based assay. Compared with the original Omicron variant (B.1.1.529), derivative variants featured progressive destabilization of antibody-RBD interfaces mediated by a larger set of substituted residues, thereby providing a molecular basis for immune evasion. This approach and findings provide a framework for rapidly and efficiently generating structural models for SARS-CoV-2 variants bound to ligands of mechanistic and therapeutic value.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Evasión Inmune , Ligandos , Pandemias , Anticuerpos Monoclonales
3.
Front Immunol ; 12: 652223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367128

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious and presents a significant public health issue. Current therapies used to treat coronavirus disease 2019 (COVID-19) include monoclonal antibody cocktail, convalescent plasma, antivirals, immunomodulators, and anticoagulants. The vaccines from Pfizer and Moderna have recently been authorized for emergency use, which are invaluable for the prevention of SARS-CoV-2 infection. However, their long-term side effects are not yet documented, and populations with immunocompromised conditions (e.g., organ-transplantation and immunodeficient patients) may not be able to mount an effective immune response. In addition, there are concerns that wide-scale immunity to SARS-CoV-2 may introduce immune pressure that could select for escape mutants to the existing vaccines and monoclonal antibody therapies. Emerging evidence has shown that chimeric antigen receptor (CAR)- natural killer (NK) immunotherapy has potent antitumor response in hematologic cancers with minimal adverse effects in recent studies, however, the potentials of CAR-NK cells in treating COVID-19 has not yet been fully exploited. Here, we improve upon a novel approach for the generation of CAR-NK cells for targeting SARS-CoV-2 and its various mutants. CAR-NK cells were generated using the scFv domain of S309 (henceforward, S309-CAR-NK), a SARS-CoV and SARS-CoV-2 neutralizing antibody (NAbs) that targets the highly conserved region of SARS-CoV-2 spike (S) glycoprotein and is therefore more likely to recognize different variants of SARS-CoV-2 isolates. S309-CAR-NK cells can specifically bind to pseudotyped SARS-CoV-2 virus and its D614G, N501Y, and E484K mutants. Furthermore, S309-CAR-NK cells can specifically kill target cells expressing SARS-CoV-2 S protein in vitro and show superior killing activity and cytokine production, compared to that of the recently reported CR3022-CAR-NK cells. Thus, these results pave the way for generating 'off-the-shelf' S309-CAR-NK cells for treatment in high-risk individuals as well as provide an alternative strategy for patients unresponsive to current vaccines.


Asunto(s)
COVID-19/inmunología , Regulación de la Expresión Génica/inmunología , Células Asesinas Naturales/inmunología , Receptores Quiméricos de Antígenos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Células A549 , COVID-19/genética , COVID-19/patología , COVID-19/terapia , Regulación de la Expresión Génica/genética , Células Hep G2 , Humanos , Receptores Quiméricos de Antígenos/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
4.
Cell Biosci ; 11(1): 114, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162440

RESUMEN

BACKGROUND: The novel SARS-CoV-2 has quickly become a global pandemic since the first reported case in December 2019, with the virus infecting millions of people to date. The spike (S) protein of the SARS-CoV-2 virus plays a key role in binding to angiotensin-converting enzyme 2 (ACE2), a host cell receptor for SARS-CoV-2. S proteins that are expressed on the cell membrane can initiate receptor-dependent syncytia formation that is associated with extensive tissue damage. Formation of syncytia have been previously observed in cells infected with various other viruses (e.g., HIV, Ebola, Influenza, and Herpesviruses). However, this phenomenon is not well documented and the mechanisms regulating the formation of the syncytia by SARS-CoV-2 are not fully understood. RESULTS: In this study, we investigated the possibility that cell fusion events mediated by the S protein of SARS-CoV-2 and ACE2 interaction can occur in different human cell lines that mimic different tissue origins. These cell lines were transduced with either wild-type (WT-S) S protein or a mutated variant where the ER-retention motif was removed (Δ19-S), as well as human ACE2 expression vectors. Different co-culture combinations of spike-expressing 293T, A549, K562, and SK-Hep1 cells with hACE2-expressing cells revealed cell hybrid fusion. However, only certain cells expressing S protein can form syncytial structures as this phenomenon cannot be observed in all co-culture combinations. Thus, SARS-CoV-2 mediated cell-cell fusion represents a cell type-dependent process which might rely on a different set of parameters. Recently, the Δ19-S variant is being widely used to increase SARS-CoV-2 pseudovirus production for in vitro assays. Comparison of cell fusion occurring via Δ19-S expressing cells shows defective nuclear fusion and syncytia formation compared to WT-S. CONCLUSIONS: This distinction between the Δ19-S variant and WT-S protein may have downstream implications for studies that utilize pseudovirus-based entry assays. Additionally, this study suggest that spike protein expressed by vaccines may affect different ACE2-expressing host cells after SARS-CoV-2 vaccine administration. The long-term effects of these vaccines should be monitored carefully. Δ19-S mRNA may represent a safer mRNA vaccine design in the future.

5.
Res Sq ; 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33851149

RESUMEN

The novel SARS-CoV-2 has quickly become a global pandemic since the first reported case in December 2019, with the virus infecting millions of people to date. The spike (S) protein of the SARS-CoV-2 virus plays a key role in binding to angiotensin-converting enzyme 2 (ACE2), a host cell receptor for SARS-CoV-2. S proteins that are expressed on the cell membrane can initiate receptor-dependent syncytia formation that is associated with extensive tissue damage. Formation of syncytia have been previously observed in cells infected with various other viruses (e.g., HIV, Ebola, Influenza, and Herpesviruses). However, this phenomenon is not well documented and the mechanisms regulating the formation of these syncytia by SARS-CoV-2 are not fully understood. In this study, we investigated the possibility that cell fusion events mediated by the S protein of SARS-CoV-2 and ACE2 interaction can occur in different human cell lines that mimic different tissue origins. These cell lines were stably transduced with either wild-type (WT-S) S protein or a mutated variant where the ER-retention motif was removed (Δ19-S), or human ACE2 vectors. Different co-culture combinations of spike-expressing 293T, A549, K562, and SK-Hep1 cells with hACE2-expressing cells revealed cell hybrid fusion. However, only certain cells expressing S protein can form syncytial structures as this phenomenon cannot be observed in all co-culture combinations. Thus, SARS-CoV-2 mediated cell-cell fusion represents a cell type-dependent process which might rely on a different set of parameters. Recently, the Δ19-S variant is being widely used to increase SARS-CoV-2 pseudovirus production for in vitro assays. Comparison of cell fusion occurring via Δ19-S expressing cells shows defective nuclear fusion and syncytia formation compared to WT-S. This distinction between the Δ19-S variant and WT-S protein may have downstream implications for studies that utilize pseudovirus-based entry assays. Additionally, this study suggest that spike protein expressed by vaccines may affect different ACE2-expressing host cells after SARS-CoV-2 vaccine administration. The long-term effects of these vaccines should be monitored carefully.

6.
bioRxiv ; 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33469580

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious presenting a significant public health issue. Current therapies used to treat coronavirus disease 2019 (COVID-19) include monoclonal antibody cocktail, convalescent plasma, antivirals, immunomodulators, and anticoagulants, though the current therapeutic options remain limited and expensive. The vaccines from Pfizer and Moderna have recently been authorized for emergency use, which are invaluable for the prevention of SARS-CoV-2 infection. However, their long-term side effects are not yet to be documented, and populations with immunocompromised conditions (e.g., organ-transplantation and immunodeficient patients) may not be able to mount an effective immune response. In addition, there are concerns that wide-scale immunity to SARS-CoV-2 may introduce immune pressure that could select for escape mutants to the existing vaccines and monoclonal antibody therapies. Emerging evidence has shown that chimeric antigen receptor (CAR)- natural killer (NK) immunotherapy has potent antitumor response in hematologic cancers with minimal adverse effects in recent studies, however, the potentials of CAR-NK cells in preventing and treating severe cases of COVID-19 has not yet been fully exploited. Here, we improve upon a novel approach for the generation of CAR-NK cells for targeting SARS-CoV-2 and its D614G mutant. CAR-NK cells were generated using the scFv domain of S309 (henceforward, S309-CAR-NK), a SARS-CoV and SARS-CoV-2 neutralizing antibody that targets the highly conserved region of SARS-CoV-2 spike (S) glycoprotein, therefore would be more likely to recognize different variants of SARS-CoV-2 isolates. S309-CAR-NK cells can specifically bind to pseudotyped SARS-CoV-2 virus and its D614G mutant. Furthermore, S309-CAR-NK cells can specifically kill target cells expressing SARS-CoV-2 S protein in vitro and show superior killing activity and cytokine production, compared to that of the recently published CR3022-CAR-NK cells. Thus, these results pave the way for generating 'off-the-shelf' S309-CAR-NK cells for treatment in high-risk individuals as well as provide an alternative strategy for patients unresponsive to current vaccines.

7.
PLoS One ; 15(10): e0240255, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33035268

RESUMEN

Biological organisms respond to environmental stressors by recruiting multiple cellular cascades that act to mitigate damage and ultimately enhance survival. This implies that compounds that interact with any of those pathways might improve organism's survival. Here, we report on an initial attempt to develop a drug screening assay based on the heat shock (HS) response of Caenorhabditis elegans nematodes. The protocol works by subjecting the worms to two HS conditions in the absence/presence of the test compounds. Post-heat shock survival is quantified manually or in semi-automatic manner by analyzing z-stack pictures. We blindly screened a cassette of 72 compounds in different developmental stages provided by Eli Lilly through their Open Innovation Drug Discovery program. The analysis indicated that, on average, therapeutically useful drugs increase survival to HS compared to compounds used in non-clinical settings. We developed a formalism that estimates the probability of a compound to enhance survival based on a comparison with a set of parameters calculated from a pool of 35 FDA-approved drugs. The method correctly identified the developmental stages of the Lilly compounds based on their relative abilities to enhance survival to the HS. Taken together these data provide proof of principle that an assay that measures the HS response of C. elegans can offer physiological and pharmacological insight in a cost- and time-efficient manner.


Asunto(s)
Bioensayo/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Respuesta al Choque Térmico/fisiología , Animales , Proteínas de Caenorhabditis elegans/genética , Evaluación Preclínica de Medicamentos/métodos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética
8.
Front Plant Sci ; 11: 126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174935

RESUMEN

The phylogeny and biogeography of the genus Paphiopedilum were evaluated by using phylogenetic trees derived from analysis of nuclear ribosomal internal transcribed spacer (ITS) sequences, the plastid trnL intron, the trnL-F spacer, and the atpB-rbcL spacer. This genus was divided into three subgenera: Parvisepalum, Brachypetalum, and Paphiopedilum. Each of them is monophyletic with high bootstrap supports according to the highly resolved phylogenetic tree reconstructed by combined sequences. There are five sections within the subgenus Paphiopedilum, including Coryopedilum, Pardalopetalum, Cochlopetalum, Paphiopedilum, and Barbata. The subgenus Parvisepalum is phylogenetic basal, which suggesting that Parvisepalum is comprising more ancestral characters than other subgenera. The evolutionary trend of genus Paphiopedilum was deduced based on the maximum likelihood (ML) tree and Bayesian Evolutionary Analysis Sampling Trees (BEAST). Reconstruct Ancestral State in Phylogenies (RASP) analyses based on the combined sequence data. The biogeographic analysis indicates that Paphiopedilum species were firstly derived in Southern China and Southeast Asia, subsequently dispersed into the Southeast Asian archipelagoes. The subgenera Paphiopedilum was likely derived after these historical dispersals and vicariance events. Our research reveals the relevance of the differentiation of Paphiopedilum in Southeast Asia and geological history. Moreover, the biogeographic analysis explains that the significant evolutionary hotspots of these orchids in the Sundaland and Wallacea might be attributed to repeated migration and isolation events between the south-eastern Asia mainland and the Sunda Super Islands.

9.
Auton Neurosci ; 177(2): 211-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23701913

RESUMEN

BACKGROUND: Role of peroxisome proliferator-activated receptor δ (PPARδ) in cardiac contraction has recently been established. Dopamine is one of the agents used to treat heart failure in clinics. But the mediation of PPARδ in cardiac action of dopamine is still unclear. METHODS: The present study is aimed to clarify this point using neonatal rat cardiomyocytes to investigate the changes of PPARδ expression and cardiac troponin I (cTnI) phosphorylation by Western blotting analysis. Antagonists of receptors, inhibitor of phospholipase C (PLC) (U73122), calcium chelator (BAPTA-AM), and inhibitor of protein kinase A (PKAI) were also applied. We silenced PPARδ by RNAi to identify the major role of PPARδ in dopamine-induced actions. RESULTS: Dopamine increases PPARδ expression and cardiac troponin I (cTnI) phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. Moreover, both actions of dopamine were blocked by DA1 receptor antagonist and PLC inhibitor but not by PKAI. The increase of cTnI phosphorylation by dopamine was also inhibited in cardiomyocytes silenced by RNAi of PPARδ. CONCLUSION: We suggest that dopamine can enhance cardiac contraction mainly through an activation of DA1 receptor-linked PLC pathway to increase cellular calcium ions for the increase of PPARδ expression.


Asunto(s)
Dopamina/fisiología , Miocitos Cardíacos/metabolismo , PPAR delta/biosíntesis , Receptores de Dopamina D1/metabolismo , Transducción de Señal/fisiología , Fosfolipasas de Tipo C/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Inhibidores Enzimáticos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de Dopamina D1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Fosfolipasas de Tipo C/antagonistas & inhibidores
10.
Am J Bot ; 99(5): e199-202, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22539510

RESUMEN

PREMISE OF THE STUDY: A total of 38 polymorphic microsatellite loci of the Indian jujube (Ziziphus mauritiana), an economically important fruit tree, were developed to evaluate genetic diversity and aid in the identification of cultivars. METHODS AND RESULTS: The 38 microsatellite markers were isolated from the Indian jujube using a magnetic bead enrichment method, and polymorphisms were identified in 24 Indian jujube cultivars. The number of alleles ranged from two to 13, with expected heterozygosity ranging from 0.261 to 0.898. The polymorphism information content ranged from 0.248 to 0.889, with a mean of 0.616. Of these 38 simple sequence repeat loci, 20 loci from Z. jujuba (Chinese jujube) were successfully amplified using the simple sequence repeat primer sets. CONCLUSIONS: These polymorphic loci should be useful in further studies of the genetic diversity and the identification of cultivars of both the Indian jujube and the Chinese jujube.


Asunto(s)
Frutas/economía , Frutas/genética , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Árboles/genética , Ziziphus/genética , Sitios Genéticos/genética , India , Datos de Secuencia Molecular
11.
Am J Bot ; 99(3): e117-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22371856

RESUMEN

PREMISE OF THE STUDY: Twenty microsatellite loci for mango (Mangifera indica), an important commercial fruit tree in East Asia, were developed to evaluate the genetic diversity and identification of cultivars. METHODS AND RESULTS: The 20 new microsatellite markers were isolated from mango using a magnetic bead enrichment method, and polymorphisms were identified in 22 mango cultivars. The number of alleles ranged from one to nine, with expected heterozygosity ranging from 0 to 0.826. The polymorphism information content ranged from 0 to 0.756 with a mean of 0.525. CONCLUSIONS: These new microsatellite loci should be useful and convenient for further studies of the genetic diversity and identification of cultivars in mango.


Asunto(s)
Mangifera/genética , Repeticiones de Microsatélite/genética , Polimorfismo Genético , ADN de Plantas/genética , Reacción en Cadena de la Polimerasa
12.
Proc Natl Acad Sci U S A ; 106(4): 1139-44, 2009 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-19151157

RESUMEN

Clathrin is a coat protein involved in vesicle budding from several membrane-bound compartments within the cell. Here we present an analysis of a temperature-sensitive (ts) mutant of clathrin heavy chain (CHC) in a multicellular animal. As expected Caenorhabditis elegans chc-1(b1025ts) mutant animals are defective in receptor-mediated endocytosis and arrest development soon after being shifted to the restrictive temperature. Steady-state clathrin levels in these mutants are reduced by more than 95% at all temperatures. Hub interactions and membrane associations are lost at the restrictive temperature. chc-1(b1025ts) animals become paralyzed within minutes of exposure to the restrictive temperature because of a defect in the nervous system. Surprisingly synaptic vesicle number is not reduced in chc-1(b1025ts) animals. Consistent with the normal number of vesicles, postsynaptic miniature currents occur at normal frequencies. Taken together, these results indicate that a high level of CHC activity is required for receptor-mediated endocytosis in nonneuronal cells but is largely dispensable for maintenance of synaptic vesicle pools.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Cadenas Pesadas de Clatrina/metabolismo , Endocitosis , Receptores de Superficie Celular/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cadenas Pesadas de Clatrina/genética , Mutación/genética , Unión Neuromuscular/citología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Transmisión Sináptica , Vesículas Sinápticas/ultraestructura
13.
J Synchrotron Radiat ; 14(Pt 6): 477-82, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17960029

RESUMEN

The formation of colloidal unmodified (naked) gold nanoparticles is investigated by irradiation of a precursor solution with X-rays from a synchrotron source. An interesting morphological evolution as a function of exposure time, from cross-linked network-like structure to individual particles, has been discovered. The particle size decreased with the exposure time and was influenced by the ionic strength of the precursor solution. Contrary to gamma-ray exposure, an OH radical scavenger was not required for cluster formation.


Asunto(s)
Oro Coloide/efectos de la radiación , Nanopartículas del Metal/efectos de la radiación , Rayos X , 2-Propanol/farmacología , Depuradores de Radicales Libres/farmacología , Oro Coloide/química , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Concentración Osmolar
14.
J Infect Dis ; 190(4): 697-701, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15272396

RESUMEN

To investigate African long-term survivors (LTSs) infected with non-subtype B human immunodeficiency virus type 1 (HIV-1), we obtained full-length HIV-1 RNA sequences and immunogenetic profiles from 6 untreated women enrolled in the Pumwani Sex Worker Cohort in Nairobi, Kenya. There were no discernible sequence changes likely to cause attenuation. CCR2-V64I, an immunogenetic polymorphism linked to LTSs, was detected in 4 women, all of whom carried the HLA B58 allele. Further investigation of 99 HIV-1-infected Nairobi women found an association between CCR2-V64I and HLA B58 (P=.0048). Studying the interaction among immunogenetics, immune responses, and viral sequences from all HIV-1 subtypes may increase our understanding of slow HIV-1 disease progression.


Asunto(s)
Infecciones por VIH/epidemiología , Infecciones por VIH/genética , VIH-1/genética , Enfermedades Profesionales/epidemiología , ARN Viral/genética , Trabajo Sexual , Adulto , Alelos , Quimiocina CCL2/genética , Estudios de Cohortes , Femenino , Genotipo , Infecciones por VIH/sangre , VIH-1/patogenicidad , Antígenos HLA/genética , Humanos , Kenia/epidemiología , Datos de Secuencia Molecular , Polimorfismo Genético , ARN Viral/sangre , Receptores CCR2 , Receptores de Quimiocina/genética
15.
J Infect Dis ; 187(4): 569-75, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12599073

RESUMEN

The human gene for CC chemokine receptor 5, a coreceptor for human immunodeficiency virus type 1 (HIV-1), affects susceptibility to infection. Most studies of predominantly male cohorts found that individuals carrying a homozygous deleted form of the gene, Delta 32, were protected against transmission, but protection did not extend to Delta 32 heterozygotes. The role played by this mutation in HIV-1 transmission to women was studied in 2605 participants in the Women's Interagency HIV Study. The Delta 32 gene frequency was 0.026 for HIV-1-seropositive women and 0.040 for HIV-1-seronegative women, and statistical analyses showed that Delta 32 heterozygotes were significantly less likely to be infected (odds ratio, 0.63 [95% confidence interval, 0.44-0.90]). The CCR5 Delta 32 heterozygous genotype may confer partial protection against HIV-1 infection in women. Because Delta 32 is rare in Africans and Asians, it seems plausible that differential genetic susceptibility, in addition to social and behavioral factors, may contribute to the rapid heterosexual spread of HIV-1 in Africa and Asia.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Infecciones por VIH/genética , Infecciones por VIH/transmisión , VIH-1 , Receptores CCR5/genética , Estudios de Cohortes , Femenino , Eliminación de Gen , Seropositividad para VIH/genética , Seropositividad para VIH/transmisión , VIH-1/inmunología , Heterocigoto , Humanos , Estados Unidos , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA