Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Matter ; 7(6): 2184-2204, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-39221109

RESUMEN

Tissue engineering has long sought to rapidly generate perfusable vascularized tissues with vessel sizes spanning those seen in humans. Current techniques such as biological 3D printing (top-down) and cellular self-assembly (bottom-up) are resource intensive and have not overcome the inherent tradeoff between vessel resolution and assembly time, limiting their utility and scalability for engineering tissues. We present a flexible and scalable technique termed SPAN - Sacrificial Percolation of Anisotropic Networks, where a network of perfusable channels is created throughout a tissue in minutes, irrespective of its size. Conduits with length scales spanning arterioles to capillaries are generated using pipettable alginate fibers that interconnect above a percolation density threshold and are then degraded within constructs of arbitrary size and shape. SPAN is readily used within common tissue engineering processes, can be used to generate endothelial cell-lined vasculature in a multi-cell type construct, and paves the way for rapid assembly of perfusable tissues.

2.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-39114859

RESUMEN

Movies of human induced pluripotent stem cell (hiPSC)-derived engineered cardiac tissue (microbundles) contain abundant information about structural and functional maturity. However, extracting these data in a reproducible and high-throughput manner remains a major challenge. Furthermore, it is not straightforward to make direct quantitative comparisons across the multiple in vitro experimental platforms employed to fabricate these tissues. Here, we present "MicroBundlePillarTrack," an open-source optical flow-based package developed in Python to track the deflection of pillars in cardiac microbundles grown on experimental platforms with two different pillar designs ("Type 1" and "Type 2" design). Our software is able to automatically segment the pillars, track their displacements, and output time-dependent metrics for contractility analysis, including beating amplitude and rate, contractile force, and tissue stress. Because this software is fully automated, it will allow for both faster and more reproducible analyses of larger datasets and it will enable more reliable cross-platform comparisons as compared to existing approaches that require manual steps and are tailored to a specific experimental platform. To complement this open-source software, we share a dataset of 1,540 brightfield example movies on which we have tested our software. Through sharing this data and software, our goal is to directly enable quantitative comparisons across labs, and facilitate future collective progress via the biomedical engineering open-source data and software ecosystem.

3.
ArXiv ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39184538

RESUMEN

Movies of human induced pluripotent stem cell (hiPSC)-derived engineered cardiac tissue (microbundles) contain abundant information about structural and functional maturity. However, extracting these data in a reproducible and high-throughput manner remains a major challenge. Furthermore, it is not straightforward to make direct quantitative comparisons across the multiple in vitro experimental platforms employed to fabricate these tissues. Here, we present "MicroBundlePillarTrack," an open-source optical flow-based package developed in Python to track the deflection of pillars in cardiac microbundles grown on experimental platforms with two different pillar designs ("Type 1" and "Type 2" design). Our software is able to automatically segment the pillars, track their displacements, and output time-dependent metrics for contractility analysis, including beating amplitude and rate, contractile force, and tissue stress. Because this software is fully automated, it will allow for both faster and more reproducible analyses of larger datasets and it will enable more reliable cross-platform comparisons as compared to existing approaches that require manual steps and are tailored to a specific experimental platform. To complement this open-source software, we share a dataset of 1,540 brightfield example movies on which we have tested our software. Through sharing this data and software, our goal is to directly enable quantitative comparisons across labs, and facilitate future collective progress via the biomedical engineering open-source data and software ecosystem.

4.
Colloids Surf B Biointerfaces ; 242: 114099, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39024719

RESUMEN

Generating stable and customizable topography on hydrogel surfaces with contact guidance potential is critical as it can direct/influence cell growth. This necessitates the development of new techniques for surface patterning of the hydrogels. We report on the design of a square grid template for surface patterning hydrogels. The template was 3-D printed and has the diameter of a well in a 24-well plate. Hyaluronic acid methacrylate (HA) hydrogel precursor solutions were cast on the 3D printed template's surface, which generated 3D square shape topographies on the HA hydrogel surface upon demolding. The 3D Laser Microscopy has shown the formation of a periodic array of 3D topographies on hydrogel surfaces. 3D Laser and Electron Microscopy Imaging have revealed that this new method has increased the surface area and exposed the underlying pore structure of the HA hydrogels. To demonstrate the method's versatility, we have successfully applied this technique to generate 3D topography on two more acrylate hydrogel formulations, gelatin Methacrylate and polyethylene glycol dimethacrylate. Human neonatal dermal fibroblast cells were used as a model cell line to evaluate the cell guidance potential of patterned HA hydrogel. Confocal fluorescence microscopy imaging has revealed that the 3D surface topographies on HA hydrogels can guide and align the actin filaments of the fibroblasts presumably due to the contact guidance mechanism. The newly developed methodology of 3D topography generation in acrylate hydrogels may influence the cell responses on hydrogel surfaces which can impact biomedical applications such as tissue engineering, wound healing, and disease modeling.


Asunto(s)
Fibroblastos , Ácido Hialurónico , Hidrogeles , Impresión Tridimensional , Propiedades de Superficie , Hidrogeles/química , Hidrogeles/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ácido Hialurónico/química , Metacrilatos/química , Acrilatos/química , Células Cultivadas , Polietilenglicoles/química
5.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915575

RESUMEN

We introduce an adaptor-based strategy for regulating fluorescein-binding synthetic Notch (SynNotch) receptors using ligands based on conjugates of fluorescein isomers and analogs. To develop a versatile system, we evaluated the surface expression and activities of multiple constructs containing distinct extracellular fluorescein-binding domains. Using an optimized receptor, we devised ways to regulate signaling via fluorescein-based chemical transformations, including an approach based on a bio-orthogonal chemical ligation and a spatially controllable strategy via the photo-patterned uncaging of an o -nitrobenzyl-caged fluorescein conjugate. We further demonstrate that fluorescein-conjugated extracellular matrix (ECM)-binding peptides can regulate SynNotch activity depending on the folding state of collagen-based ECM networks. Treatment with these conjugates enabled cells to distinguish between folded versus denatured collagen proteins and enact dose-dependent gene expression responses depending on the nature of the signaling adaptors presented. To demonstrate the utility of these tools, we applied them to control the myogenic conversion of fibroblasts into myocytes with spatial and temporal precision and in response to denatured collagen-I, a biomarker of multiple pathological states. Overall, we introduce an optimized fluorescein-binding SynNotch as a versatile tool for regulating transcriptional responses to extracellular ligands based on the widely used and clinically-approved fluorescein dye.

6.
APL Bioeng ; 8(2): 026126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38911024

RESUMEN

Previous lung-on-chip devices have facilitated significant advances in our understanding of lung biology and pathology. Here, we describe a novel lung-on-a-chip model in which human induced pluripotent stem cell-derived alveolar epithelial type II cells (iAT2s) form polarized duct-like lumens alongside engineered perfused vessels lined with human umbilical vein endothelium, all within a 3D, physiologically relevant microenvironment. Using this model, we investigated the morphologic and signaling consequences of the KRASG12D mutation, a commonly identified oncogene in human lung adenocarcinoma (LUAD). We show that expression of the mutant KRASG12D isoform in iAT2s leads to a hyperproliferative response and morphologic dysregulation in the epithelial monolayer. Interestingly, the mutant epithelia also drive an angiogenic response in the adjacent vasculature that is mediated by enhanced secretion of the pro-angiogenic factor soluble uPAR. These results demonstrate the functionality of a multi-cellular in vitro platform capable of modeling mutation-specific behavioral and signaling changes associated with lung adenocarcinoma.

7.
Adv Funct Mater ; 34(17)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38693998

RESUMEN

Although tissue culture plastic has been widely employed for cell culture, the rigidity of plastic is not physiologic. Softer hydrogels used to culture cells have not been widely adopted in part because coupling chemistries are required to covalently capture extracellular matrix (ECM) proteins and support cell adhesion. To create an in vitro system with tunable stiffnesses that readily adsorbs ECM proteins for cell culture, we present a novel hydrophobic hydrogel system via chemically converting hydroxyl residues on the dextran backbone to methacrylate groups, thereby transforming non-protein adhesive, hydrophilic dextran to highly protein adsorbent substrates. Increasing methacrylate functionality increases the hydrophobicity in the resulting hydrogels and enhances ECM protein adsorption without additional chemical reactions. These hydrophobic hydrogels permit facile and tunable modulation of substrate stiffness independent of hydrophobicity or ECM coatings. Using this approach, we show that substrate stiffness and ECM adsorption work together to affect cell morphology and proliferation, but the strengths of these effects vary in different cell types. Furthermore, we reveal that stiffness mediated differentiation of dermal fibroblasts into myofibroblasts is modulated by the substrate ECM. Our material system demonstrates remarkable simplicity and flexibility to tune ECM coatings and substrate stiffness and study their effects on cell function.

8.
PLoS One ; 19(3): e0298863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38530829

RESUMEN

Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , Técnicas de Cultivo de Célula , Diferenciación Celular
9.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433304

RESUMEN

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Contracción Miocárdica , Miocitos Cardíacos , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Ingeniería de Tejidos , Humanos , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Perfilación de la Expresión Génica
10.
Phys Biol ; 21(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452380

RESUMEN

Understanding the structural and functional development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is essential to engineering cardiac tissue that enables pharmaceutical testing, modeling diseases, and designing therapies. Here we use a method not commonly applied to biological materials, small angle x-ray scattering, to characterize the structural development of hiPSC-CMs within three-dimensional engineered tissues during their preliminary stages of maturation. An x-ray scattering experimental method enables the reliable characterization of the cardiomyocyte myofilament spacing with maturation time. The myofilament lattice spacing monotonically decreases as the tissue matures from its initial post-seeding state over the span of 10 days. Visualization of the spacing at a grid of positions in the tissue provides an approach to characterizing the maturation and organization of cardiomyocyte myofilaments and has the potential to help elucidate mechanisms of pathophysiology, and disease progression, thereby stimulating new biological hypotheses in stem cell engineering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miofibrillas , Humanos , Rayos X , Diferenciación Celular/fisiología , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Ingeniería de Tejidos/métodos
11.
Lab Chip ; 24(6): 1685-1701, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38317604

RESUMEN

Geometry and mechanical characteristics of the environment surrounding the Engineered Heart Tissues (EHT) affect their structure and function. Here, we employed a 3D tissue culture platform fabricated using two-photon direct laser writing with a high degree of accuracy to control parameters that are relevant to EHT maturation. Using this platform, we first explore the effects of geometry based on two distinct shapes: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites that are placed symmetrically along hemicylindrical membranes. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length of the seeding wells for both configurations and observe a positive correlation between fiber alignment at the center of the EHTs and tissue length. With increasing length, an undesirable thinning and "necking" also emerge, leading to the failure of longer tissues over time. In the second step, we optimize the stiffness of the seeding wells and modify some of the attachment sites of the platform and the seeding parameters to achieve tissue stability for each length and geometry. Furthermore, we use the platform for electrical pacing and calcium imaging to evaluate the functional dynamics of EHTs as a function of frequency.


Asunto(s)
Miocitos Cardíacos , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Rayos Láser , Contracción Miocárdica
12.
APL Bioeng ; 8(1): 016108, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38352162

RESUMEN

Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell-matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.

13.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961415

RESUMEN

The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, we established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. We find that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can inform the design of translatable regenerative cardiac therapies.

14.
Proc Natl Acad Sci U S A ; 120(41): e2308941120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782785

RESUMEN

Impaired lymphatic drainage and lymphedema are major morbidities whose mechanisms have remained obscure. To study lymphatic drainage and its impairment, we engineered a microfluidic culture model of lymphatic vessels draining interstitial fluid. This lymphatic drainage-on-chip revealed that inflammatory cytokines that are known to disrupt blood vessel junctions instead tightened lymphatic cell-cell junctions and impeded lymphatic drainage. This opposing response was further demonstrated when inhibition of rho-associated protein kinase (ROCK) was found to normalize fluid drainage under cytokine challenge by simultaneously loosening lymphatic junctions and tightening blood vessel junctions. Studies also revealed a previously undescribed shift in ROCK isoforms in lymphatic endothelial cells, wherein a ROCK2/junctional adhesion molecule-A (JAM-A) complex emerges that is responsible for the cytokine-induced lymphatic junction zippering. To validate these in vitro findings, we further demonstrated in a genetic mouse model that lymphatic-specific knockout of ROCK2 reversed lymphedema in vivo. These studies provide a unique platform to generate interstitial fluid pressure and measure the drainage of interstitial fluid into lymphatics and reveal a previously unappreciated ROCK2-mediated mechanism in regulating lymphatic drainage.


Asunto(s)
Molécula A de Adhesión de Unión , Vasos Linfáticos , Linfedema , Quinasas Asociadas a rho , Animales , Ratones , Biomimética , Citocinas/metabolismo , Células Endoteliales/metabolismo , Uniones Intercelulares , Molécula A de Adhesión de Unión/metabolismo , Vasos Linfáticos/metabolismo , Linfedema/genética , Linfedema/metabolismo , Quinasas Asociadas a rho/metabolismo
15.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37808725

RESUMEN

In brief: The mechanisms regulating the signaling pathways involved in angiogenesis are not fully known. Ristori et al. show that Lunatic Fringe (LFng) mediates the crosstalk between Bone Morphogenic Protein 9 (Bmp9) and Notch signaling, thereby regulating the endothelial cell behavior and temporal dynamics of their identity during sprouting angiogenesis. Highlights: Bmp9 upregulates the expression of LFng in endothelial cells.LFng regulates the temporal dynamics of tip/stalk selection and rearrangement.LFng indicated to play a role in hereditary hemorrhagic telangiectasia.Bmp9 and LFng mediate the endothelial cell-pericyte crosstalk.Bone Morphogenic Protein 9 (Bmp9), whose signaling through Activin receptor-like kinase 1 (Alk1) is involved in several diseases, has been shown to independently activate Notch target genes in an additive fashion with canonical Notch signaling. Here, by integrating predictive computational modeling validated with experiments, we uncover that Bmp9 upregulates Lunatic Fringe (LFng) in endothelial cells (ECs), and thereby also regulates Notch activity in an inter-dependent, multiplicative fashion. Specifically, the Bmp9-upregulated LFng enhances Notch receptor activity creating a much stronger effect when Dll4 ligands are also present. During sprouting, this LFng regulation alters vessel branching by modulating the timing of EC phenotype selection and rearrangement. Our results further indicate that LFng can play a role in Bmp9-related diseases and in pericyte-driven vessel stabilization, since we find LFng contributes to Jag1 upregulation in Bmp9-stimulated ECs; thus, Bmp9-upregulated LFng results in not only enhanced EC Dll4-Notch1 activation, but also Jag1-Notch3 activation in pericytes.

16.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37796194

RESUMEN

Notch receptors control tissue morphogenic processes that involve coordinated changes in cell architecture and gene expression, but how a single receptor can produce these diverse biological outputs is unclear. Here, we employ a 3D model of a human ductal epithelium to reveal tissue morphogenic defects result from loss of Notch1, but not Notch1 transcriptional signaling. Instead, defects in duct morphogenesis are driven by dysregulated epithelial cell architecture and mitogenic signaling which result from the loss of a transcription-independent, Notch1 cortical signaling mechanism that ultimately functions to stabilize adherens junctions and cortical actin. We identify that Notch1 localization and cortical signaling are tied to apical-basal cell restructuring and discover that a Notch1-FAM83H interaction underlies control of epithelial adherens junctions and cortical actin. Together, these results offer new insights into Notch1 signaling and regulation and advance a paradigm in which transcriptional and cell adhesive programs might be coordinated by a single receptor.


Asunto(s)
Actinas , Uniones Adherentes , Adhesión Celular , Receptor Notch1 , Humanos , Uniones Adherentes/genética , Proliferación Celular , Células Epiteliales , Proteínas , Receptor Notch1/genética , Transducción de Señal
17.
Front Bioeng Biotechnol ; 11: 1177688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251575

RESUMEN

Introduction: Three dimensional engineered cardiac tissues (3D ECTs) have become indispensable as in vitro models to assess drug cardiotoxicity, a leading cause of failure in pharmaceutical development. A current bottleneck is the relatively low throughput of assays that measure spontaneous contractile forces exerted by millimeter-scale ECTs typically recorded through precise optical measurement of deflection of the polymer scaffolds that support them. The required resolution and speed limit the field of view to at most a few ECTs at a time using conventional imaging. Methods: To balance the inherent tradeoff among imaging resolution, field of view and speed, an innovative mosaic imaging system was designed, built, and validated to sense contractile force of 3D ECTs seeded on a 96-well plate. Results: The system performance was validated through real-time, parallel contractile force monitoring for up to 3 weeks. Pilot drug testing was conducted using isoproterenol. Discussion: The described tool increases contractile force sensing throughput to 96 samples per measurement; significantly reduces cost, time and labor needed for preclinical cardiotoxicity assay using 3D ECT. More broadly, our mosaicking approach is a general way to scale up image-based screening in multi-well formats.

18.
IEEE Trans Biomed Eng ; 70(7): 2237-2245, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37021994

RESUMEN

Three-dimensional engineered heart tissues (EHTs) derived from human induced pluripotent stem cells (iPSCs) have become an important resource for both drug toxicity screening and research on heart disease. A key metric of EHT phenotype is the contractile (twitch) force with which the tissue spontaneously beats. It is well-known that cardiac muscle contractility - its ability to do mechanical work - depends on tissue prestrain (preload) and external resistance (afterload). OBJECTIVES: Here, we demonstrate a technique to control afterload while monitoring contractile force exerted by EHTs. METHODS: We developed an apparatus that can regulate EHT boundary conditions using real-time feedback control. The system is comprised of a pair of piezoelectric actuators that can strain the scaffold and a microscope that can measure EHT force and length. Closed loop control allows dynamic regulation of effective EHT boundary stiffness. RESULTS: When controlled to switch instantaneously from auxotonic to isometric boundary conditions, EHT twitch force immediately doubled. Changes in EHT twitch force as a function of effective boundary stiffness were characterized and compared to twitch force in auxotonic conditions. CONCLUSION: EHT contractility can be regulated dynamically through feedback control of effective boundary stiffness. SIGNIFICANCE: The capacity to alter the mechanical boundary conditions of an engineered tissue dynamically offers a new way to probe tissue mechanics. This could be used to mimic afterload changes that occur naturally in disease, or to improve mechanical techniques for EHT maturation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocardio , Contracción Miocárdica/fisiología , Ingeniería de Tejidos/métodos
19.
Nat Commun ; 14(1): 688, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755019

RESUMEN

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e., protein abundance from whole-cells, nucleus, exosomes, secretome and membrane; N-glycosylation, phosphorylation; metabolites; mRNA, miRNA; and, in parallel, single-cell transcriptomes. We apply PAMAF in an established in vitro model of TGFß-induced epithelial to mesenchymal transition (EMT) to quantify >61,000 molecules from 12 omics and 10 timepoints over 12 days. Bioinformatics analysis of this EMT-ExMap resource allowed us to identify; -topological coupling between omics, -four distinct cell states during EMT, -omics-specific kinetic paths, -stage-specific multi-omics characteristics, -distinct regulatory classes of genes, -ligand-receptor mediated intercellular crosstalk by integrating scRNAseq and subcellular proteomics, and -combinatorial drug targets (e.g., Hedgehog signaling and CAMK-II) to inhibit EMT, which we validate using a 3D mammary duct-on-a-chip platform. Overall, this study provides a resource on TGFß signaling and EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Hedgehog , Transición Epitelial-Mesenquimal/genética , Proteínas Hedgehog/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 323(4): H738-H748, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36053751

RESUMEN

After a myocardial infarction (MI), the heart undergoes changes including local remodeling that can lead to regional abnormalities in mechanical and electrical properties, ultimately increasing the risk of arrhythmias and heart failure. Although these responses have been successfully recapitulated in animal models of MI, local changes in tissue and cell-level mechanics caused by MI remain difficult to study in vivo. Here, we developed an in vitro cardiac microtissue (CMT) injury system that through acute focal injury recapitulates aspects of the regional responses seen following an MI. With a pulsed laser, cell death was induced in the center of the microtissue causing a loss of calcium signaling and a complete loss of contractile function in the injured region and resulting in a 39% reduction in the CMT's overall force production. After 7 days, the injured area remained void of cardiomyocytes (CMs) and showed increased expression of vimentin and fibronectin, two markers for fibrotic remodeling. Interestingly, although the injured region showed minimal recovery, calcium amplitudes in uninjured regions returned to levels comparable with control. Furthermore, overall force production returned to preinjury levels despite the lack of contractile function in the injured region. Instead, uninjured regions exhibited elevated contractile function, compensating for the loss of function in the injured region, drawing parallels to changes in tissue-level mechanics seen in vivo. Overall, this work presents a new in vitro model to study cardiac tissue remodeling and electromechanical changes after injury.NEW & NOTEWORTHY We report an in vitro cardiac injury model that uses a high-powered laser to induce regional cell death and a focal fibrotic response within a human-engineered cardiac microtissue. The model captures the effects of acute injury on tissue response, remodeling, and electromechanical recovery in both the damaged region and surrounding healthy tissue, modeling similar changes to contractile function observed in vivo following myocardial infarction.


Asunto(s)
Fibronectinas , Infarto del Miocardio , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Fibronectinas/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Remodelación Ventricular , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...