Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38949943

RESUMEN

The broad learning system (BLS) featuring lightweight, incremental extension, and strong generalization capabilities has been successful in its applications. Despite these advantages, BLS struggles in multitask learning (MTL) scenarios with its limited ability to simultaneously unravel multiple complex tasks where existing BLS models cannot adequately capture and leverage essential information across tasks, decreasing their effectiveness and efficacy in MTL scenarios. To address these limitations, we proposed an innovative MTL framework explicitly designed for BLS, named group sparse regularization for broad multitask learning system using related task-wise (BMtLS-RG). This framework combines a task-related BLS learning mechanism with a group sparse optimization strategy, significantly boosting BLS's ability to generalize in MTL environments. The task-related learning component harnesses task correlations to enable shared learning and optimize parameters efficiently. Meanwhile, the group sparse optimization approach helps minimize the effects of irrelevant or noisy data, thus enhancing the robustness and stability of BLS in navigating complex learning scenarios. To address the varied requirements of MTL challenges, we presented two additional variants of BMtLS-RG: BMtLS-RG with sharing parameters of feature mapped nodes (BMtLS-RGf), which integrates a shared feature mapping layer, and BMtLS-RGf and enhanced nodes (BMtLS-RGfe), which further includes an enhanced node layer atop the shared feature mapping structure. These adaptations provide customized solutions tailored to the diverse landscape of MTL problems. We compared BMtLS-RG with state-of-the-art (SOTA) MTL and BLS algorithms through comprehensive experimental evaluation across multiple practical MTL and UCI datasets. BMtLS-RG outperformed SOTA methods in 97.81% of classification tasks and achieved optimal performance in 96.00% of regression tasks, demonstrating its superior accuracy and robustness. Furthermore, BMtLS-RG exhibited satisfactory training efficiency, outperforming existing MTL algorithms by 8.04-42.85 times.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38619940

RESUMEN

Affective brain-computer interfaces (aBCIs) have garnered widespread applications, with remarkable advancements in utilizing electroencephalogram (EEG) technology for emotion recognition. However, the time-consuming process of annotating EEG data, inherent individual differences, non-stationary characteristics of EEG data, and noise artifacts in EEG data collection pose formidable challenges in developing subject-specific cross-session emotion recognition models. To simultaneously address these challenges, we propose a unified pre-training framework based on multi-scale masked autoencoders (MSMAE), which utilizes large-scale unlabeled EEG signals from multiple subjects and sessions to extract noise-robust, subject-invariant, and temporal-invariant features. We subsequently fine-tune the obtained generalized features with only a small amount of labeled data from a specific subject for personalization and enable cross-session emotion recognition. Our framework emphasizes: 1) Multi-scale representation to capture diverse aspects of EEG signals, obtaining comprehensive information; 2) An improved masking mechanism for robust channel-level representation learning, addressing missing channel issues while preserving inter-channel relationships; and 3) Invariance learning for regional correlations in spatial-level representation, minimizing inter-subject and inter-session variances. Under these elaborate designs, the proposed MSMAE exhibits a remarkable ability to decode emotional states from a different session of EEG data during the testing phase. Extensive experiments conducted on the two publicly available datasets, i.e., SEED and SEED-IV, demonstrate that the proposed MSMAE consistently achieves stable results and outperforms competitive baseline methods in cross-session emotion recognition.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Emociones , Humanos , Emociones/fisiología , Electroencefalografía/métodos , Femenino , Masculino , Aprendizaje Automático , Artefactos , Adulto , Redes Neurales de la Computación
3.
Artículo en Inglés | MEDLINE | ID: mdl-37494165

RESUMEN

Deep neural networks have recently been successfully extended to EEG-based driving fatigue detection. Nevertheless, most existing models fail to reveal the intrinsic inter-channel relations that are known to be beneficial for EEG-based classification. Additionally, these models require substantial data for training, which is often impractical due to the high cost of data collection. To simultaneously address these two issues, we propose a Self-Attentive Channel-Connectivity Capsule Network (SACC-CapsNet) for EEG-based driving fatigue detection in this paper. SACC-CapsNet starts with a temporal-channel attention module to investigate the critical temporal information and important channels for driving fatigue detection, refining the input EEG signals. Subsequently, the refined EEG data are transformed into a channel covariance matrix to capture the inter-channel relations, followed by selective kernel attention to extract the highly discriminative channel-connectivity features. Finally, a capsule neural network is employed to effectively learn the relationships between connectivity features, which is more suitable for limited data. To confirm the effectiveness of SACC-CapsNet, we collected 24-channel EEG data from 31 subjects (mean age=23.13±2.68 years, male/female=18/13) in a simulated fatigue driving environment. Extensive experiments were conducted with the acquired data, and the comparison results show that our proposed model outperforms state-of-the-art methods. Additionally, the channel covariance matrix learned from SACC-CapsNet reveals that the frontal pole is most informative for detecting driving fatigue, followed by the parietal and central regions. Intriguingly, the temporal-channel attention module can enhance the significance of these critical regions, and the reconstructed channel covariance matrix generated by the decoder network of SACC-CapsNet can effectively preserve valuable information about them.


Asunto(s)
Electroencefalografía , Redes Neurales de la Computación , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Electroencefalografía/métodos , Aprendizaje Automático , Aprendizaje
4.
Artículo en Inglés | MEDLINE | ID: mdl-37030863

RESUMEN

Machine learning aims to generate a predictive model from a training dataset of a fixed number of known classes. However, many real-world applications (such as health monitoring and elderly care) are data streams in which new data arrive continually in a short time. Such new data may even belong to previously unknown classes. Hence, class-incremental learning (CIL) is necessary, which incrementally and rapidly updates an existing model with the data of new classes while retaining the existing knowledge of old classes. However, most current CIL methods are designed based on deep models that require a computationally expensive training and update process. In addition, deep learning based CIL (DCIL) methods typically employ stochastic gradient descent (SGD) as an optimizer that forgets the old knowledge to a certain extent. In this article, a broad learning system-based CIL (BLS-CIL) method with fast update and high retainability of old class knowledge is proposed. Traditional BLS is a fast and effective shallow neural network, but it does not work well on CIL tasks. However, our proposed BLS-CIL can overcome these issues and provide the following: 1) high accuracy due to our novel class-correlation loss function that considers the correlations between old and new classes; 2) significantly short training/update time due to the newly derived closed-form solution for our class-correlation loss without iterative optimization; and 3) high retainability of old class knowledge due to our newly derived recursive update rule for CIL (RULL) that does not replay the exemplars of all old classes, as contrasted to the exemplars-replaying methods with the SGD optimizer. The proposed BLS-CIL has been evaluated over 12 real-world datasets, including seven tabular/numerical datasets and six image datasets, and the compared methods include one shallow network and seven classical or state-of-the-art DCIL methods. Experimental results show that our BIL-CIL can significantly improve the classification performance over a shallow network by a large margin (8.80%-48.42%). It also achieves comparable or even higher accuracy than DCIL methods, but greatly reduces the training time from hours to minutes and the update time from minutes to seconds.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37021904

RESUMEN

A brain-computer interface (BCI), which provides an advanced direct human-machine interaction, has gained substantial research interest in the last decade for its great potential in various applications including rehabilitation and communication. Among them, the P300-based BCI speller is a typical application that is capable of identifying the expected stimulated characters. However, the applicability of the P300 speller is hampered for the low recognition rate partially attributed to the complex spatio-temporal characteristics of the EEG signals. Here, we developed a deep-learning analysis framework named ST-CapsNet to overcome the challenges regarding better P300 detection using a capsule network with both spatial and temporal attention modules. Specifically, we first employed spatial and temporal attention modules to obtain refined EEG signals by capturing event-related information. Then the obtained signals were fed into the capsule network for discriminative feature extraction and P300 detection. In order to quantitatively assess the performance of the proposed ST-CapsNet, two publicly-available datasets (i.e., Dataset IIb of BCI Competition 2003 and Dataset II of BCI Competition III) were applied. A new metric of averaged symbols under repetitions (ASUR) was adopted to evaluate the cumulative effect of symbol recognition under different repetitions. In comparison with several widely-used methods (i.e., LDA, ERP-CapsNet, CNN, MCNN, SWFP, and MsCNN-TL-ESVM), the proposed ST-CapsNet framework significantly outperformed the state-of-the-art methods in terms of ASUR. More interestingly, the absolute values of the spatial filters learned by ST-CapsNet are higher in the parietal lobe and occipital region, which is consistent with the generation mechanism of P300.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...