Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Microencapsul ; 41(3): 226-254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38560994

RESUMEN

Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.


LBNPs are tiny artificial particles made of lipids using different formulation methods. They are powerful and versatile delivery platforms with great potential as anticancer therapies. LBNPs have been tested in clinical applications and can safely deliver anticancer agents, including vaccine payloads designed to target various cancer types.LBNPs' size, surface charge, and targeting ligands can be modified during formulation, and they can be administered to specific tissues via various routes. LBNPs can target tumours and release their payload via active, passive, or stimuli-responsive mechanisms.Active targeting requires surface modification in order to target and deliver their payload, while passive targeting do not. Stimuli-responsive release mechanisms move to the tumour microenvironment and release their payload upon an internal or external stimulus.There are several challenges faced by LBNPs in delivering cancer drugs and vaccines, but advanced research methods have opened new doors vital for expanding their applications in clinical oncology.LBNPs offer the advantage of enhanced drug stability and bioavailability, prolonged circulation time of therapeutic agents in the bloodstream, and improved efficacy in targeting cancerous tissues.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Lípidos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124256, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38615418

RESUMEN

Acute myocardial infarction (AMI) is a life-threatening condition with a narrow treatment window, necessitating rapid and accurate diagnostic methods. We present an "all-in-one" convenient and rapid immunoassay system that combines microfluidic technology with a colloidal gold immunoassay. A degassing-driven chip replaces a bulky external pump, resulting in a user-friendly and easy-to-operate immunoassay system. The chip comprises four units: an inlet reservoir, an immunoreaction channel, a waste pool, and an immunocomplex collection chamber, allowing single-channel flow for rapid and accurate AMI biomarker detection. In this study, we focused on cardiac troponin I (cTnI). With a minimal sample of just 4 µL and a total detection time of under 3 min, the chip enabled a quantitative visual analysis of cTnI concentration within a range of 0.5 âˆ¼ 60.0 ng mL-1. This all-in-one integrated microfluidic chip with colloidal gold immunoassay offers a promising solution for rapid AMI diagnosis. The system's portability, small sample requirement, and quantitative visual detection capabilities make it a valuable tool for AMI diagnostics.


Asunto(s)
Biomarcadores , Diagnóstico Precoz , Dispositivos Laboratorio en un Chip , Infarto del Miocardio , Troponina I , Infarto del Miocardio/diagnóstico , Biomarcadores/análisis , Biomarcadores/sangre , Humanos , Troponina I/análisis , Troponina I/sangre , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Oro Coloide/química
3.
J Am Chem Soc ; 145(48): 26339-26349, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38011890

RESUMEN

We report an in-depth investigation into the ammonia oxidation mechanism by the catalyst [RuIII(tpy)(dmabpy)NH3]3+ ([Ru(NH3)]3+). Stoichiometric reactions of [Ru(NH3)]3+ were carried out with exogenous noncoordinating bases to trigger a proposed redox disproportionation reaction, which was followed using variable-temperature NMR spectroscopy. An intermediate species was identified as a dinitrogen-bridged complex using 15N NMR and Raman spectroscopy on isotopically labeled complexes. This intermediate is proposed to derive from coupling of nitridyl species formed upon sequential redox disproportion reactions. Acetonitrile displaces the dinitrogen bridge to yield free N2. DFT calculations support this lower-energy pathway versus that previously reported for ammonia oxidation by the parent [RuIII(tpy)(bpy)NH3]3+ complex. These experimental and computational results are consistent with the interpretation of redox disproportionation involving sequential hydrogen atom transfer reactions by an amide/aminyl intermediate, [Ru(NH2)-]+ ⇔ [Ru(NH2)•]+, formed upon deprotonation of the parent complex. Control experiments employing a large excess of ammonia as a base indicate this new proposed lower-energy pathway contributes to the oxidation of ammonia to dinitrogen in conditions relevant to electrocatalysis. In addition, analogous methylamine complexes, [Ru(NH2CH3)]2+/3+, were prepared to further test the proposed mechanism. Treating [Ru(NH2CH3)]3+ with a base cleanly yields two products [Ru(NH2CH3)]2+ and [Ru(CN)]+ in an ∼3:1 ratio, fully consistent with the proposed cascade of hydrogen atom transfer reactions by an intermediate.

4.
J Sep Sci ; 46(24): e2300471, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37905470

RESUMEN

Sensitive biomarker detection techniques are beneficial for both disease diagnosis and postoperative examinations. In this study, we report an integrated microfluidic chip designed for the immunodetection of prostate-specific antigens (PSAs). The microfluidic chip is based on the three-dimensional structure of quartz capillaries. The outlet channel extends to 1.8 cm, effectively facilitating the generation of uniform droplets ranging in size from 3 to 50 µm. Furthermore, we successfully immobilized the captured antibodies onto the surface of magnetic beads using an activator, and we constructed an immunosandwich complex by employing biotinylated antibodies. A key feature of this microfluidic chip is its integration of microfluidic droplet technology advantages, such as high-throughput parallelism, enzymatic signal amplification, and small droplet size. This integration results in an exceptionally sensitive PSA detection capability, with the detection limit reduced to 7.00 ± 0.62 pg/mL.


Asunto(s)
Técnicas Analíticas Microfluídicas , Antígeno Prostático Específico , Humanos , Masculino , Microfluídica/métodos , Campos Magnéticos , Biomarcadores , Inmunoensayo/métodos
5.
Int J Pharm ; 643: 123220, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37437856

RESUMEN

Due to triple-negative breast cancer (TNBC) lacking specific targets for efficient therapies, nanoparticles have been widely developed to enhance efficacy and reduce the toxicity of chemotherapeutics. We prepared unique liposomes containing PTX and DOX by microfluidics-based coaxial electrostatic spray method, which have a uniform particle size, high drug loading capacity, and good stability. Meanwhile, the cRGD peptide was fused with the lipid membrane to form PTX/DOX@cRGD-Lipo, which played a GPS role in locating tumor neovascularization and further targeting TNBC cells where both overexpress αvß3. The PTX/DOX@cRGD-Lipo showed synergistic anti-tumor activity of double drugs and enhanced tumor cell apoptosis. Fluorescence microscopy and flow cytometry showed that the co-loaded targeted liposomes could be effectively absorbed by MDA-MB-231 and 4T1 cells and then released the content. In addition, the PTX/DOX@cRGD-Lipo presented excellent targeting biodistribution in vivo and a higher tumor growth inhibition rate in the orthotopic tumor mouse model. All results suggested that the double drug-loaded targeted liposome could be a promising treatment modality for TNBC.


Asunto(s)
Liposomas , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Liposomas/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Electricidad Estática , Distribución Tisular , Microfluídica , Línea Celular Tumoral , Doxorrubicina
6.
J Biol Chem ; 299(6): 104751, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100287

RESUMEN

As a typical biomarker, the expression of microRNA is closely related to the occurrence of cancer. However, in recent years, the detection methods have had some limitations in the research and application of microRNAs. In this paper, an autocatalytic platform was constructed through the combination of a nonlinear hybridization chain reaction and DNAzyme to achieve efficient detection of microRNA-21. Fluorescently labeled fuel probes can form branched nanostructures and new DNAzyme under the action of the target, and the newly formed DNAzyme can trigger a new round of reactions, resulting in enhanced fluorescence signals. This platform is a simple, efficient, fast, low-cost, and selective method for the detection of microRNA-21, which can detect microRNA-21 at concentrations as low as 0.004 nM and can distinguish sequence differences by single-base differences. In tissue samples from patients with liver cancer, the platform shows the same detection accuracy as real-time PCR but with better reproducibility. In addition, through the flexible design of the trigger chain, our method could be adapted to detect other nucleic acid biomarkers.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/análisis , ADN Catalítico/química , Reproducibilidad de los Resultados , Límite de Detección , Hibridación de Ácido Nucleico , Biomarcadores , Técnicas Biosensibles/métodos
7.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111360

RESUMEN

Mental illnesses are a global health challenge, and effective medicines are needed to treat these conditions. Psychotropic drugs are commonly prescribed to manage mental disorders, such as schizophrenia, but unfortunately, they can cause significant and undesirable side effects, such as myocarditis, erectile dysfunction, and obesity. Furthermore, some schizophrenic patients may not respond to psychotropic drugs, a condition called schizophrenia-treatment resistance. Fortunately, clozapine is a promising option for patients who exhibit treatment resistance. Unlike chlorpromazine, scientists have found that clozapine has fewer neurological side effects. Additionally, olanzapine and aripiprazole are well-known for their moderating effects on psychosis and are widely used in clinical practice. To further maximize drug efficacy, it is critical to deeply understand the receptors or signaling pathways central to the nervous system, such as serotonin, histamine, trace amines, dopamine, and G-protein coupled receptors. This article provides an overview of the receptors mentioned above, as well as the antipsychotics that interact with them, such as olanzapine, aripiprazole, clozapine, and chlorpromazine. Additionally, this article discusses the general pharmacology of these medications.

8.
Anal Methods ; 15(11): 1422-1430, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36857646

RESUMEN

Sensitive biomarker detection techniques are beneficial for both disease diagnosis and postoperative examinations. The nonlinear hybridization chain reaction (NHCR) is widely used as an output signal amplification technique for biosensor platforms. A novel hairpin-free NHCR was developed in this study as a flow cytometric immunoassay to detect alpha-fetoprotein (AFP) and prostate specific antigen (PSA). First, the target AFP is captured on magnetic beads (MBs) that are modified with capture antibodies. Then, the prepared biotin-streptavidin-biotin (B-S-B) system, which links biotinylated detection antibodies and biotinylated trigger DNA together through the high affinity between biotin-streptavidin interaction, is added to label the target AFP, forming a sandwich complex with three trigger DNA chains. Each trigger DNA chain grows a dendritic DNA nanostructure following a nonlinear hybridization chain reaction. As the substrate flue chains are labeled with fluorophores, the self-assembly process of dendritic DNA is accompanied by the continuous release of fluorophores. Dendrites with strong fluorescence then form on the surface of MBs. Finally, the target AFP is quantified by analyzing the fluorescent MBs using flow cytometry. The proposed immunoassay has a high selectivity along with isothermal, enzyme-free, and exponential amplification efficiency. It shows a limit of detection (LOD) of 1.74 pg mL-1. The proposed biosensor was also successfully used to quantitatively detect AFP in serum samples. It may be utilized to detect multiple tumor markers simultaneously by changing the size of MBs and antibody-antigen pairs. Most tumor markers are only related to tumor diagnosis but without specificity, so the combined detection of multiple tumor markers can improve the accuracy of early tumor diagnoses.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Masculino , Humanos , Biomarcadores de Tumor , alfa-Fetoproteínas , Biotina/química , Estreptavidina/química , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , ADN , Proteínas de Neoplasias
9.
Crit Rev Biochem Mol Biol ; 58(1): 19-35, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36916323

RESUMEN

Circular RNAs (circRNAs) are evolutionarily conserved noncoding RNAs with tissue-specific expression patterns, and exert unique cellular functions that have the potential to become biomarkers in therapeutic applications. Therefore, accurate and sensitive detection of circRNA with facile platforms is essential for better understanding of circRNA biological processes and circRNA-related disease diagnosis and prognosis; and precise regulation of circRNA through efficient delivery of circRNA or siRNA is critical for therapeutic purposes. Here, we reviewed the current development of circRNA identification methodologies, including overviewing the purification steps, summarizing the sequencing methods of circRNA, as well as comparing the advantages and disadvantages of traditional and new detection methods. Then, we discussed the delivery and manipulation strategies for circRNAs in both research and clinic treatment. Finally, the challenges and opportunities of analyzing circRNAs were addressed.


Asunto(s)
ARN Circular , ARN , ARN/genética , ARN/metabolismo , Biomarcadores
10.
Biosensors (Basel) ; 13(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831930

RESUMEN

Spread of coronavirus disease 2019 (COVID-19) has significantly impacted the public health and economic sectors. It is urgently necessary to develop rapid, convenient, and cost-effective point-of-care testing (POCT) technologies for the early diagnosis and control of the plague's transmission. Developing POCT methods and related devices is critical for achieving point-of-care diagnosis. With the advantages of miniaturization, high throughput, small sample requirements, and low actual consumption, microfluidics is an essential technology for the development of POCT devices. In this review, according to the different driving forces of the fluid, we introduce the common POCT devices based on microfluidic technology on the market, including paper-based microfluidic, centrifugal microfluidic, optical fluid, and digital microfluidic platforms. Furthermore, various microfluidic-based assays for diagnosing COVID-19 are summarized, including immunoassays, such as ELISA, and molecular assays, such as PCR. Finally, the challenges of and future perspectives on microfluidic device design and development are presented. The ultimate goals of this paper are to provide new insights and directions for the development of microfluidic diagnostics while expecting to contribute to the control of COVID-19.


Asunto(s)
COVID-19 , Técnicas Analíticas Microfluídicas , Humanos , Microfluídica , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Inmunoensayo , Dispositivos Laboratorio en un Chip
11.
Talanta ; 253: 123977, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36201957

RESUMEN

In the past few years, with the in-depth research of functional nucleic acids and isothermal amplification techniques, their applications in the field of biosensing have attracted great interest. Since functional nucleic acids have excellent flexibility and convenience in their structural design, they have significant advantages as recognition elements in biosensing. At the same time, isothermal amplification techniques have higher amplification efficiency, so the combination of functional nucleic acids and isothermal amplification techniques can greatly promote the widespread application of biosensors. For the purpose of further improving the performance of biosensors, this review introduces several widely used functional nucleic acids and isothermal amplification techniques, as well as their classification, basic principles, application characteristics, and summarizes their important applications in the field of biosensing. We hope to provide some references for the design and construction of new tactics to enhance the detection sensitivity and detection range of biosensing.


Asunto(s)
Ácidos Nucleicos
12.
J Pharm Anal ; 13(12): 1429-1451, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38223444

RESUMEN

With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.

14.
Biosensors (Basel) ; 12(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36551067

RESUMEN

Separation and clonal culture and growth kinetics analysis of target cells in a mixed population is critical for pathological research, disease diagnosis, and cell therapy. However, long-term culture with time-lapse imaging of the isolated cells for clonal analysis is still challenging. This paper reports a microfluidic device with four-level filtration channels and a pneumatic microvalve for size sorting and in situ clonal culture of single cells. The valve was on top of the filtration channels and used to direct fluid flow by membrane deformation during separation and long-term culture to avoid shear-induced cell deformation. Numerical simulations were performed to evaluate the influence of device parameters affecting the pressure drop across the filtration channels. Then, a droplet model was employed to evaluate the impact of cell viscosity, cell size, and channel width on the pressure drop inducing cell deformation. Experiments showed that filtration channels with a width of 7, 10, 13, or 17 µm successfully sorted K562 cells into four different size ranges at low driving pressure. The maximum efficiency of separating K562 cells from media and whole blood was 98.6% and 89.7%, respectively. Finally, the trapped single cells were cultured in situ for 4-7 days with time-lapse imaging to obtain the lineage trees and growth curves. Then, the time to the first division, variation of cell size before and after division, and cell fusion were investigated. This proved that cells at the G1 and G2 phases were of significantly distinct sizes. The microfluidic device for size sorting and clonal expansion will be of tremendous application potential in single-cell studies.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Filtración , Dispositivos Laboratorio en un Chip , Cinética
15.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293340

RESUMEN

To improve liposomes' usage as drug delivery vehicles, cryoprotectants can be utilized to prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concentration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essentially depends on a complex interaction between protectants and bilayer composition. Furthermore, different types of CPAs have distinct effective mechanisms of action; therefore, the combination of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid-CPA interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for preventing leakage of drugs from liposomes.


Asunto(s)
Crioprotectores , Liposomas , Crioprotectores/farmacología , Hielo , Congelación , Excipientes , Fosfolípidos
17.
Anal Chim Acta ; 1220: 340048, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35868702

RESUMEN

Sensitive detection of biomarkers is highly desirable for disease diagnosis and postoperative examination. As a signal amplification technique, nonlinear hybridization chain reactions (NHCR) based on DNA self-assembly has been widely adopted to versatile biosensor platforms for signal output and sensitivity enhancement. Herein, we proposed a novel hairpin-free NHCR based flow cytometric immunoassay for prostate specific antigen (PSA) detection. In this study, Ab1-Ag-Ab2-streptavidin-trigger DNA complexes were formed on the magnetic beads (MBs), and each trigger DNA initiated a round of NHCR amplification to form dendritic DNA nanostructures with many fluorescent signal molecules. The robust flow cytometric fluorescent analysis was finally employed for the quantitation of target protein on the MBs. As far as we know, this is the first time to combine the hairpin-free NHCR strategy with fluorescent immunoassay on MBs to detect protein biomarkers. In addition to the high selectivity of immunoassay itself, the characteristics of isothermal, enzyme-free, and exponential amplification efficiency of hairpin-free NHCR endow this developed immunoassay with a detection limit that exceeds 100-folds that of commercially available PSA kits. Moreover, this MBs-based platform of this immunoassay is also amenable to target enrichment and removal of spontaneous NHCR signal through magnetic separation, greatly eliminating the background signal interference. With our efforts, this newly developed biosensor exhibits a detection limit of 1.92 pg/mL and shows high selectivity. It has also been successfully applied to the quantitative detection of PSA in serum samples. With these merits, this convenient biosensor platform has the potential for medical research and disease diagnosis.


Asunto(s)
Técnicas Biosensibles , Antígeno Prostático Específico , ADN/química , Humanos , Inmunoensayo , Límite de Detección , Masculino , Técnicas de Amplificación de Ácido Nucleico , Hibridación de Ácido Nucleico
18.
Drug Deliv ; 29(1): 1437-1446, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35532150

RESUMEN

Microspheres play an important role in controlling drug delivery and release rate accurately. To realize the sustainable release of insoluble small-molecule drugs, a new three-phase flow-focusing microfluidic device was developed to produce the drug-loaded sustained-release microspheres which were prepared with bicalutamide (BCS class-II) as the model drug and poly(lactide-co-glycolide) (PLGA) as the carrier material. Under optimized prescription conditions, the microspheres showed a smooth surface and uniform size of 51.33 µm with a CV value of 4.43%. Sustained-release microspheres had a releasing duration of around 40 days in vitro without any initial burst release. The drug release mechanism of the microspheres was drug diffusion and polymer erosion. Meanwhile, the drug release of microspheres in vivo could be up to 30 days. Briefly, the microfluidic device in this study provides a new solution for the preparation of sustained-release microspheres for insoluble small-molecule drugs. PLGA sustained-release microspheres developed by the microfluidic device have good application prospects in precise delivery and sustainable release of insoluble small-molecule drugs.


Asunto(s)
Microfluídica , Preparaciones de Acción Retardada , Microesferas , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
19.
J Sep Sci ; 45(11): 1918-1941, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35325510

RESUMEN

So far, the potential of capillary electrophoresis in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption, and low cost. This review examines the implementations and advancements of capillary electrophoresis in different application fields (environmental, pharmaceutical, clinical, and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used ultraviolet-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review being focused on the development of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical, and food analysis, the new sample pretreatment techniques of microextraction and enrichment fit excellently to capillary electrophoresis in recent three years are also described briefly.


Asunto(s)
Electroforesis Capilar , Análisis de los Alimentos , Electroforesis Capilar/métodos , Preparaciones Farmacéuticas
20.
Analyst ; 146(23): 7087-7103, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34775502

RESUMEN

The hybridization chain reaction is a very popular isothermal nucleic acid amplification technology. A single-stranded DNA initiator triggers an alternate hybridization event between two hairpins forming a double helix polymer. Due to isothermal, enzyme-free and high amplification efficiency characteristics, the HCR is often used as a signal amplification technology for various biosensing and biomedicine fields. However, as an enzyme-free self-assembly reaction, it has some inevitable shortcomings of relatively slow kinetics, low cell internalization efficiency, weak biostability of DNA probes and uncontrollable reaction in these applications. More and more researchers use this reaction system to synthesize new materials. New materials can avoid these problems skillfully by virtue of their inherent biological characteristics, molecular recognition ability, sequence programmability and biocompatibility. Here, we summarized the traditional application of the HCR in biosensing and biomedicine in recent years, and also introduced its new application in the synthesis of new materials for biosensing and biomedicine. Finally, we summarized the development and challenges of the HCR in biosensing and biomedicine in recent years. We hope to give readers some enlightenment and help.


Asunto(s)
Técnicas Biosensibles , ADN/genética , Sondas de ADN , Técnicas de Amplificación de Ácido Nucleico , Hibridación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA