Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39141263

RESUMEN

Pharmaceuticals, which are closely linked to human activities, have attracted global attention. This study investigated the occurrence characteristics of 20 pharmaceuticals in surface water of the Yangtze Estuary and adjacent sea. A total of 14 targeted pharmaceuticals were detected in both spring and summer sampling campaigns. The mean concentrations of sulfonamides and non-sulfonamides were 36.60 ± 19.43 ng·L-1 and 50.02 ± 41.07 ng·L-1, respectively. As for non-antibiotics, their concentrations were in the range of 24.34 ± 916.8 ng·L-1 with caffeine accounting for 6.17 ~ 86.70% (average percentage of 42.22%). Meanwhile, spatial distribution patterns showed similarities between antibiotics and non-antibiotics, with high levels occurring near the upper estuary, aquaculture areas, wastewater treatment plants, and the maximum turbidity zone. This phenomenon could be related to the sources of pharmaceuticals and the physicochemical properties of water bodies. Obviously, the first three areas are highly impacted by human activities or serve as important sources of terrestrial contaminants entering the East China Sea. The last area retains high amounts of suspended particles which may exert strong trapping effects on hydrophobic chemicals. Principal component analysis revealed the presence of three potential sources for pharmaceuticals in the Yangtze Estuary, with a relatively high percentage originating from incompletely treated municipal sewage. As for the temporal trend, pharmaceutical contamination was found to be higher in spring compared to summer, potentially due to variations in pharmaceutical consumption patterns, local rainfalls, and water temperatures. These findings provide fundamental data support for implementing appropriate local management strategies for pharmaceutical usages.

2.
Environ Int ; 185: 108536, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38471263

RESUMEN

This study investigated the impacts of light irradiation and polymer types on the leaching behavior of dissolved organic matter (DOM) from microplastics (MPs) in freshwater. Polypropylene had the highest leaching capacity of DOM after photoaging, followed by polystyrene (PS), polyamide (PA) and polyethylene terephthalate (PET). While similarly low levels of DOM were observed in the remaining 5 MP suspensions under UV irradiation and in almost all MP suspensions (except PA) under darkness. These suggest that the photooxidation of some buoyant plastics may influence the carbon cycling of nature waters. Among 9 MP-derived leachates, PET leachates had the highest chromophoric DOM concentration and aromaticity, probably owing to the special benzene rings and carbonyl groups in PET structures and its fast degradation rate. Protein-like substances were the primary fluorescent DOM in MP suspensions (except PS), especially in darkness no other fluorescent substances were found. Considering the bio-labile properties of proteins together, MPs regardless of floating or suspended in an aquatic environment may have prevalent long-term effects on microbial activities. Besides, from monomers to hexamers with newly formed chemical bonds were identified in UV-irradiated MP suspensions. These results will contribute to a deep insight into the potential ecological effects related to MP degradation.


Asunto(s)
Microplásticos , Plásticos , Polímeros , Materia Orgánica Disuelta , Poliestirenos , Agua Dulce , Nylons
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...