Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Microb Cell Fact ; 23(1): 171, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867280

RESUMEN

BACKGROUND: Fibroblast growth factor 21 (FGF21) is a promising candidate for treating metabolic disorder diseases and has been used in phase II clinical trials. Currently, metabolic diseases are prevalent worldwide, underscoring the significant market potential of FGF21. Therefore, the production of FGF21 must be effectively improved to meet market demand. RESULTS: Herein, to investigate the impact of vectors and host cells on FGF21 expression, we successfully engineered strains that exhibit a high yield of FGF21. Surprisingly, the data revealed that vectors with various copy numbers significantly impact the expression of FGF21, and the results showed a 4.35-fold increase in expression levels. Furthermore, the performance of the double promoter and tandem gene expression construction design surpassed that of the conventional construction method, with a maximum difference of 2.67 times. CONCLUSION: By exploring engineered vectors and host cells, we successfully achieved high-yield production of the FGF21 strain. This breakthrough lays a solid foundation for the future industrialization of FGF21. Additionally, FGF21 can be easily, quickly and efficiently expressed, providing a better tool and platform for the research and application of more recombinant proteins.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Vectores Genéticos , Regiones Promotoras Genéticas , Proteínas Recombinantes , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Vectores Genéticos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Expresión Génica
2.
Am J Physiol Heart Circ Physiol ; 326(5): H1219-H1251, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363215

RESUMEN

Sex-based differences in the development of obesity-induced cardiometabolic dysfunction are well documented, however, the specific mechanisms are not completely understood. Obesity has been linked to dysregulation of the epitranscriptome, but the role of N6-methyladenosine (m6A) RNA methylation has not been investigated in relation to the sex differences during obesity-induced cardiac dysfunction. In the current study, male and female C57BL/6J mice were subjected to short- and long-term high-fat/high-sucrose (HFHS) diet to induce obesogenic stress. Cardiac echocardiography showed males developed systolic and diastolic dysfunction after 4 mo of diet, but females maintained normal cardiac function despite both sexes being metabolically dysfunctional. Cardiac m6A machinery gene expression was differentially regulated by duration of HFHS diet in male, but not female mice, and left ventricular ejection fraction correlated with RNA machinery gene levels in a sex- and age-dependent manner. RNA-sequencing of cardiac transcriptome revealed that females, but not males may undergo protective cardiac remodeling early in the course of obesogenic stress. Taken together, our study demonstrates for the first time that cardiac RNA methylation machinery genes are regulated early during obesogenic stress in a sex-dependent manner and may play a role in the sex differences observed in cardiometabolic dysfunction.NEW & NOTEWORTHY Sex differences in obesity-associated cardiomyopathy are well documented but incompletely understood. We show for the first time that RNA methylation machinery genes may be regulated in response to obesogenic diet in a sex- and age-dependent manner and levels may correspond to cardiac systolic function. Our cardiac RNA-seq analysis suggests female, but not male mice may be protected from cardiac dysfunction by a protective cardiac remodeling response early during obesogenic stress.


Asunto(s)
Adenosina/análogos & derivados , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Animales , Femenino , Masculino , Factores Sexuales , Obesidad/metabolismo , Obesidad/genética , Obesidad/fisiopatología , Función Ventricular Izquierda , Ratones , Remodelación Ventricular , Adenosina/metabolismo , Cardiopatías/metabolismo , Cardiopatías/genética , Cardiopatías/etiología , Cardiopatías/fisiopatología , Factores de Tiempo , Modelos Animales de Enfermedad , Miocardio/metabolismo , Transcriptoma , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/etiología
3.
Heart Lung Circ ; 33(5): 747-752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38365500

RESUMEN

BACKGROUND: Increased cancer survivorship represents a remarkable achievement for modern medicine. Unfortunately, cancer treatments have inadvertently contributed to cardiovascular (CV) damage, significantly threatening the health and quality of life of patients living with, through and beyond cancer. Without understanding the mechanisms, including whether the cardiotoxicity is due to the direct or indirect effects on cardiomyocytes, prevention and management of cardiotoxicity can pose challenges in many patients. To date, the cardiotoxicity profiles of most of the chemotherapy drugs are still poorly understood. AIM: To conduct a pilot study to investigate the direct effects of a range of cancer therapies on cardiomyocyte viability. METHODS: Primary human cardiomyocytes (HCM) were cultured and seeded into 96-well culture plates. A total of 35 different Food and Drug Administration-approved anti-cancer drugs were added to the HCM cells with a concentration of 1uM for 72 hours. The viability of HCMs was determined using CellTitre-Glo. The experiments were repeated at least three times for each drug with HCMs of different passages. RESULTS: We identified 15 anti-cancer agents that significantly reduced HCM viability. These drugs were: (1) anthracyclines (daunorubicin [HCM viability, mean %±standard error, 13.7±3.2%], epirubicin [47.6±5.3%]), (2) antimetabolite (azacitidine [67.1±2.4%]), (3) taxanes (paclitaxel [60.2±3.0%]), (4) protein kinase inhibitors (lapatinib [49.8±7.0%], ponatinib [42.4±9.0%], pemigatinib [68.1±2.3%], sorafenib [52.9±10.6%], nilotinib [64.4±4.5%], dasatinib [38.5±3.6%]), (5) proteasome inhibitors (ixazomib citrate [65.4±7.2%]), (6) non-selective histone-deacetylase inhibitor (panobinostat [19.1±4.1%]), poly adenosine diphosphate-ribose polymerase inhibitor (olaparib [68.2±1.7%]) and (7) vinca alkaloids (vincristine [44.6±7.4%], vinblastine [31.2±3.9%]). CONCLUSIONS: In total, 15 of the 35 commercially available anti-cancer drugs have direct cardiotoxic effects on HCM. Some of those, have not been associated with clinical cardiotoxicity, while others, known to be cardiotoxic do not appear to mediate it via direct effects on cardiomyocytes. More detailed investigations of the effects of cancer therapies on various cardiovascular cells should be performed to comprehensively determine the mechanisms of cardiotoxicity.


Asunto(s)
Antineoplásicos , Cardiotoxicidad , Supervivencia Celular , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/efectos de los fármacos , Antineoplásicos/toxicidad , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Cardiotoxicidad/etiología , Neoplasias/tratamiento farmacológico , Células Cultivadas , Proyectos Piloto , Femenino
4.
Front Immunol ; 14: 1146261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600807

RESUMEN

Object: Though significant correlations between rheumatoid arthritis (RA) and hypothyroidism have been found in earlier observational studies, their underlying causal relationship is still unknown. Mendelian randomization (MR) was used in the current study to assess the bidirectional causation between RA and hypothyroidism. Method: We gathered summary data from genome-wide association studies (GWASs) of RA and hypothyroidism in people of European descent. Then, using data from the FinnGen consortium, we replicated our findings. Three approaches were employed to assess the causal link between RA and hypothyroidism: MR-Egger, weighted median (WM), and inverse variance weighted (IVW). The pleiotropy and heterogeneity were examined using a variety of techniques, including the MR-Egger intercept, the MR-PRESSO approach, the leave-one-out method, and the Cochran's Q test. Results: The study looked at a bidirectional incidental relationship between RA and hypothyroidism. The risk of hypothyroidism increased with RA (IVW odds ratio (OR) = 1.28, 95% confidence interval (CI) = 1.18-1.39, P = 8.30E-10), as did the risk of secondary hypothyroidism (IVW OR = 1.12, 95% CI = 1.05-1.21, P = 9.64E-4). The results of reverse MR analysis revealed that hypothyroidism (IVW OR = 1.68, 95% CI = 1.51-1.88, P = 4.87E-21) and secondary hypothyroidism (IVW OR = 1.74, 95% CI = 1.50-2.01, P = 1.91E-13) were linked to an increased risk of RA. Additionally, we obtain the same results in the duplicated datasets as well, which makes our results even more reliable. This study revealed no evidence of horizontal pleiotropy. Conclusion: The present study established a bidirectional causal link between RA and hypothyroidism. However, it differs slightly from the findings of prior observational studies, suggesting that future research should concentrate on the interaction mechanisms between RA and hypothyroidism.


Asunto(s)
Artritis Reumatoide , Hipotiroidismo , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Hipotiroidismo/genética , Nonoxinol
5.
J Cardiovasc Dev Dis ; 10(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504530

RESUMEN

Secreted frizzled-related protein 5 (SFRP5) is a novel anti-inflammatory adipokine that may play a role in cardiovascular development and disease. However, there is yet to be a comprehensive investigation into whether circulating SFRP5 can be a biomarker for cardiac function. Plasma SFRP5 levels were measured via ELISA in 262 patients admitted to a cardiology unit. Plasma SFRP5 levels were significantly lower in patients with a history of heart failure (HF), coronary artery disease (CAD), and atrial fibrillation (AF; p = 0.001). In univariate analyses, SFRP5 levels were also significantly positively correlated with left ventricular ejection fraction (LVEF) (r = 0.52, p < 0.001) and negatively correlated with E/E' (r = -0.30, p < 0.001). Patients with HF, CAD, low LVEF, low triglycerides, high CRP, and high eGFR were associated with lower SFRP5 levels independent of age, BMI, or diabetes after multivariate analysis (overall model r = 0.729, SE = 0.638). Our results show that low plasma SFRP5 levels are independently associated with the presence of HF, CAD, and, importantly, impaired LV function. These results suggest a potential role of SFRP5 as a biomarker, as well as a mediator of cardiac dysfunction independent of obesity and metabolic regulation.

6.
Endocrinology ; 164(7)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289042

RESUMEN

Consumption of a Western diet (WD) consisting of excess fat and carbohydrates activates the renin-angiotensin-aldosterone system, which has emerged as an important risk factor for systemic and tissue insulin resistance. We recently discovered that activated mineralocorticoid receptors (MRs) in diet-induced obesity induce CD36 expression, increase ectopic lipid accumulation, and result in systemic and tissue insulin resistance. Here, we have further investigated whether endothelial cell (EC)-specific MR (ECMR) activation participates in WD-induced ectopic skeletal muscle lipid accumulation, insulin resistance, and dysfunction. Six-week-old female ECMR knockout (ECMR-/-) and wild-type (ECMR+/+) mice were fed either a WD or a chow diet for 16 weeks. ECMR-/- mice were found to have decreased WD-induced in vivo glucose intolerance and insulin resistance at 16 weeks. Improved insulin sensitivity was accompanied by increased glucose transporter type 4 expression in conjunction with improved soleus insulin metabolic signaling in phosphoinositide 3-kinases/protein kinase B and endothelial nitric oxide synthase activation. Additionally, ECMR-/- also blunted WD-induced increases in CD36 expression and associated elevations in soleus free fatty acid, total intramyocellular lipid content, oxidative stress, and soleus fibrosis. Moreover, in vitro and in vivo activation of ECMR increased EC-derived exosomal CD36 that was further taken up by skeletal muscle cells, leading to increased skeletal muscle CD36 levels. These findings indicate that in the context of an obesogenic WD, enhanced ECMR signaling increases EC-derived exosomal CD36 resulting in increased uptake and elevated concentrations of CD36 in skeletal muscle cells, contributing to increased lipid metabolic disorders and soleus insulin resistance.


Asunto(s)
Dieta Occidental , Resistencia a la Insulina , Ratones , Animales , Femenino , Dieta Occidental/efectos adversos , Resistencia a la Insulina/genética , Receptores de Mineralocorticoides/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Lípidos
7.
Antioxidants (Basel) ; 12(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37238003

RESUMEN

Obesity is associated with significant metabolic co-morbidities, such as diabetes, hypertension, and dyslipidaemia, as well as a range of cardiovascular diseases, all of which lead to increased hospitalisations, morbidity, and mortality. Adipose tissue dysfunction caused by chronic nutrient stress can result in oxidative stress, mitochondrial dysfunction, inflammation, hypoxia, and insulin resistance. Thus, we hypothesised that reducing adipose tissue oxidative stress via adipose tissue-targeted overexpression of the antioxidant mitochondrial catalase (mCAT) may improve systemic metabolic function. We crossed mCAT (floxed) and Adipoq-Cre mice to generate mice overexpressing catalase with a mitochondrial targeting sequence predominantly in adipose tissue, designated AdipoQ-mCAT. Under normal diet conditions, the AdipoQ-mCAT transgenic mice demonstrated increased weight gain, adipocyte remodelling, and metabolic dysfunction compared to the wild-type mice. Under obesogenic dietary conditions (16 weeks of high fat/high sucrose feeding), the AdipoQ-mCAT mice did not result in incremental impairment of adipose structure and function but in fact, were protected from further metabolic impairment compared to the obese wild-type mice. While AdipoQ-mCAT overexpression was unable to improve systemic metabolic function per se, our results highlight the critical role of physiological H2O2 signalling in metabolism and adipose tissue function.

8.
J Clin Med ; 12(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37109127

RESUMEN

The role of soluble suppression of tumorigenicity (sST2) as a biomarker in predicting clinical outcomes in patients with cardiovascular diseases (CVD) has not been fully elucidated. In this study, we sought to determine the relationship between sST2 levels and any unplanned hospital readmissions due to a major adverse cardiovascular event (MACE) within 1 year of first admission. Patients (n = 250) admitted to the cardiology unit at John Hunter Hospital were recruited. Occurrences of MACE, defined as the composite of total death, myocardial infarction (MI), stroke, readmissions for heart failure (HF), or coronary revascularization, were recorded after 30, 90, 180, and 365 days of first admission. On univariate analysis, patients with atrial fibrillation (AF) and HF had significantly higher sST2 levels vs. those who did not. Increasing levels of sST2 by quartiles were significantly associated with AF, HF, older age, low hemoglobin, low eGFR, and high CRP levels. On multivariate analysis: high sST2 levels and diabetes remained as risk predictors of any MACE occurrence; an sST2 level in the highest quartile (Q4: >28.4 ng/mL) was independently associated with older age, use of beta-blockers, and number of MACE events within a 1 year period. In this patient cohort, elevated sST2 levels are associated with unplanned hospital admission due to MACE within 1 year, independent of the nature of the index cardiovascular admission.

9.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R253-R262, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35107025

RESUMEN

Mineralocorticoid receptor (MR) activation plays an important role in hepatic insulin resistance. However, the precise mechanisms by which MR activation promotes hepatic insulin resistance remains unclear. Therefore, we sought to investigate the roles and mechanisms by which MR activation promotes Western diet (WD)-induced hepatic steatosis and insulin resistance. Six-week-old C57BL6J mice were fed either mouse chow or a WD, high in saturated fat and refined carbohydrates, with or without the MR antagonist spironolactone (1 mg/kg/day) for 16 wk. WD feeding resulted in systemic insulin resistance at 8 and 16 wk. WD also induced impaired hepatic insulin metabolic signaling via phosphoinositide 3-kinases/protein kinase B pathways, which was associated with increased hepatic CD36, fatty acid transport proteins, fatty acid-binding protein-1, and hepatic steatosis. Meanwhile, consumption of a WD-induced hepatic mitochondria dysfunction, oxidative stress, and inflammatory responses. These abnormalities occurring in response to WD feeding were blunted with spironolactone treatment. Moreover, spironolactone promoted white adipose tissue browning and hepatic glucose transporter type 4 expression. These data suggest that enhanced hepatic MR signaling mediates diet-induced hepatic steatosis and dysregulation of adipose tissue browning, and subsequent hepatic mitochondria dysfunction, oxidative stress, inflammation, as well as hepatic insulin resistance.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Animales , Dieta Alta en Grasa , Dieta Occidental/efectos adversos , Hígado Graso/etiología , Hígado Graso/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Mineralocorticoides/metabolismo , Espironolactona/metabolismo , Espironolactona/farmacología
10.
Ibrain ; 8(1): 37-47, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37786418

RESUMEN

Microglia are permanent immune cells of the central nervous system. Microglia play an important role in the pathological process of Alzheimer's disease (AD). They are mainly involved in the uptake and clearance of amyloid-ß (Aß), as well as the formation of neuroinflammation. We found that overactivated microglia increase Aß and Tau, and Aß and Tau in turn act as activators of microglia. Additionally, various cytokines and proteins, high cholesterol, and telomere shortening are all associated with microglia activation. More activated microglia induce the release of inflammatory and anti-inflammatory factors to regulate inflammation, while microglia express multiple homologous receptors that bind to neuroimmunomodulators to prevent microglia overactivation. Moreover, aging of the body promotes neuroinflammation by increasing the response to IFN-γ (interferon-γ), and aging of the microglia themselves promotes AD by inducing the accumulation of large amounts of iron and reducing autophagy by regulating protein levels. Cognitive dysfunction occurs when activated microglia induce an increase in beta oligomers, promoting the production of pro-inflammatory factors that alter the shape, composition, and density of synapses. Based on their correlation, microglia-mediated AD therapy as well as the corresponding targets and drugs are discussed. In contrast to similar reviews, this article also summarizes some novel microglia-mediated AD treatment methods over the recent years.

11.
Curr Heart Fail Rep ; 18(6): 362-377, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34731413

RESUMEN

PURPOSE OF REVIEW: Breast cancer survival rate has greatly improved in the last two decades due to the emergence of next-generation anti-cancer agents. However, cardiotoxicity remains a significant adverse effect arising from traditional and emerging chemotherapies as well as targeted therapies for breast cancer patients. In this review, we will discuss cardiotoxicities of both traditional and emerging therapies for breast cancer. We will discuss current practices to detect cardiotoxicity of these therapies with the focus on new and emerging biomarkers. We will then focus on 'omics approaches, especially the use of epigenetics to discover novel biomarkers and therapeutics to mitigate cardiotoxicity. RECENT FINDINGS: Significant cardiotoxicities of conventional chemotherapies remain and new and unpredictable new forms of cardiac and/or vascular toxicity emerge with the surge in novel and targeted therapies. Yet, there is no clear guidance on detection of cardiotoxicity, except for significant left ventricular systolic dysfunction, and even then, there is no uniform definition of what constitutes cardiotoxicity. The gold standard for detection of cardiotoxicity involves a serial echocardiography in conjunction with blood-based biomarkers to detect early subclinical cardiac dysfunction. However, the ability of these tests to detect early disease remains limited and not all forms of toxicity are detectable with these modalities. There is an unprecedented need to discover novel biomarkers that are sensitive and specific for early detection of subclinical cardiotoxicity. In that space, novel echocardiographic techniques, such as strain, are becoming more common-place and new biomarkers, discovered by epigenetic approaches, seem to become promising alternatives or adjuncts to conventional non-specific cardiac biomarkers.


Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Insuficiencia Cardíaca , Biomarcadores , Neoplasias de la Mama/tratamiento farmacológico , Detección Precoz del Cáncer , Femenino , Insuficiencia Cardíaca/diagnóstico , Humanos
12.
Food Sci Nutr ; 9(9): 4946-4951, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34532006

RESUMEN

The objective of this work was to investigate the freezing and storage temperature (-80 and -18℃) on the microstructure, protein pattern, and thermal properties of red swamp crayfish after one-week storage, and a Pearson correlation analysis was performed among these attributes. After cryogenic treatments for short-term storage, Tp (pretein denaturation temperature) was significantly raised (p < .05) except for samples frozen at -80℃ prior to store at -18℃ (-80/-18). Samples frozen and stored at -80℃ (-80/-80) had lower number and sum area of white regions in histology, higher intensity of most protein bands in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) image, and relatively higher Tp and ΔH (p < .05), while -80/-18 samples had lower intensity of most protein bands and TP 2, and higher number and sum area of white regions and ΔH 2 (p < .05). Pearson's analysis results showed the intensive TN T and MLC 1 band could be potentially considered as the markers of tissue integrity and protein degradation. Therefore, the three attributes could be applied to comprehensively assess the quality of frozen aquatic products, and -80/-80 treatment was appropriate for crayfish preservation.

13.
Metabolism ; 109: 154223, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32275972

RESUMEN

OBJECTIVE: Obesity is associated with myocardial fibrosis and impaired diastolic relaxation, abnormalities that are especially prevalent in women. Normal coronary vascular endothelial function is integral in mediating diastolic relaxation, and recent work suggests increased activation of the endothelial cell (EC) mineralocorticoid receptor (ECMR) is associated with impaired diastolic relaxation. As the endothelial Na+ channel (EnNaC) is a downstream target of the ECMR, we sought to determine whether EC-specific deletion of the critical alpha subunit, αEnNaC, would prevent diet induced-impairment of diastolic relaxation in female mice. METHODS AND MATERIALS: Female αEnNaC KO mice and littermate controls were fed a Western diet (WD) high in fat (46%), fructose corn syrup (17.5%) and sucrose (17.5%) for 12-16 weeks. Measurements were conducted for in vivo cardiac function, in vitro cardiomyocyte stiffness and EnNaC activity in primary cultured ECs. Additional biochemical studies examined indicators of oxidative stress, including aspects of antioxidant Nrf2 signaling, in cardiac tissue. RESULTS: Deletion of αEnNaC in female mice fed a WD significantly attenuated WD mediated impairment in diastolic relaxation. Improved cardiac relaxation was accompanied by decreased EnNaC-mediated Na+ currents in ECs and reduced myocardial oxidative stress. Further, deletion of αEnNaC prevented WD-mediated increases in isolated cardiomyocyte stiffness. CONCLUSION: Collectively, these findings support the notion that WD feeding in female mice promotes activation of EnNaC in the vasculature leading to increased cardiomyocyte stiffness and diastolic dysfunction.


Asunto(s)
Diástole/efectos de los fármacos , Dieta Occidental/efectos adversos , Células Endoteliales/química , Corazón/fisiopatología , Canales de Sodio/metabolismo , Rigidez Vascular/efectos de los fármacos , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología , Estrés Oxidativo , Canales de Sodio/deficiencia
15.
Biomed Pharmacother ; 109: 2327-2334, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551491

RESUMEN

OBJECTIVE: Chemoresistance has been a major problem in cancer chemotherapy. The present study aimed to investigate the effect of Rosmarinic acid (RA) on chemoresistance to 5-Fu and its molecular mechanism in gastric carcinoma. METHODS: CCK8 cell proliferation and apoptosis assay were used to evaluate the effect of RA on chemoresistance to 5-Fu in GC cells. RNA microarray was used to identify miRNA involved. Expression level of miRNA in GC cells was determined by RT-PCR. Down- or up-regulating of miRNA in the GC cells was performed by transfection of RNA interference or expression vectors in the GC cells. Double luciferase reporter assay was used to verify miRNA target genes. Expression of P-glycoprotein and Bax was analyzed with Western blot. RESULTS: RA treated SGC7901/5-Fu cells showed significant increased chemosensitivity to 5-Fu. The IC50 of 5-Fu was significantly reduced in RA treated SGC7901/5-Fu cells (70.43 ± 1.06 µg/mL) compared to untreated SGC7901/5-Fu cells (208.6 ± 1.09 µg/mL) (P < 0.05). Apoptosis rate was significantly increased in RA+5-Fu treated SGC7901/5-Fu cells compared to 5-FU treatment alone (P < 0.01). Two miRNAs, namely miR-642a-3p and miR-6785-5p, were identified to be involved in the chemo-sensitizing effect of RA in the SGC7901/5-Fu cells. RA treated SGC7901/5-Fu cells showed reduced expression levels of miR-642a-3p and miR-6785-5p compared to untreated SGC7901/5-Fu cells (P < 0.05). Down- or up-regulation of miR-6785-5p increased or reduced chemosensitivity of gastric carcinoma cells to 5-Fu, respectively. RA treated SGC7901/5-Fu and the SGC7901/5-Fu-Si cells showed significantly increased FOXO4 expression (P < 0.01). Double luciferase reporter assay confirmed miR-6785-5p directly targets FOXO4 to regulate its expression. RA significantly reduced P-gp expression and increased Bax expression in SGC7901/5-Fu and the SGC7901/5-Fu-Si cells (P < 0.05). CONCLUSION: RA enhances chemosensitivity of resistant gastric carcinoma SGC7901 cells to 5-Fu by downregulating miR-6785-5p and miR-642a-3p and increasing FOXO4 expression. These study suggest the potential for RA as a multidrug resistance-reversing agent in GC.


Asunto(s)
Cinamatos/farmacología , Depsidos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , MicroARNs/metabolismo , Neoplasias Gástricas/metabolismo , Factores de Transcripción/biosíntesis , Antimetabolitos Antineoplásicos/farmacología , Antioxidantes/farmacología , Carcinoma/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Resistencia a Antineoplásicos/fisiología , Factores de Transcripción Forkhead , Marcación de Gen/métodos , Humanos , MicroARNs/antagonistas & inhibidores , Ácido Rosmarínico
16.
Metabolism ; 74: 32-40, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28764846

RESUMEN

OBJECTIVE: Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. MATERIALS/METHODS: Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. RESULTS: XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. CONCLUSIONS: Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration.


Asunto(s)
Dieta Occidental , Inflamación/inducido químicamente , Proteinuria/inducido químicamente , Ácido Úrico/sangre , Rigidez Vascular/efectos de los fármacos , Alopurinol/administración & dosificación , Alopurinol/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Úrico/farmacología , Xantina Oxidasa/antagonistas & inhibidores
17.
Cardiovasc Diabetol ; 16(1): 61, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28476142

RESUMEN

BACKGROUND: Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system. METHODS: Female C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks. RESULTS: WD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration. CONCLUSIONS: Together, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomiopatías/prevención & control , Dieta Occidental/efectos adversos , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Linagliptina/farmacología , Miocarditis/prevención & control , Miocardio/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Cardiomiopatías/enzimología , Cardiomiopatías/etiología , Cardiomiopatías/fisiopatología , Células Cultivadas , Diástole , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Fibrosis , Ratones Endogámicos C57BL , Miocarditis/enzimología , Miocarditis/etiología , Miocarditis/fisiopatología , Miocardio/ultraestructura , FN-kappa B/metabolismo , Estrés Nitrosativo/efectos de los fármacos , Obesidad/etiología , Estrés Oxidativo/efectos de los fármacos , Recuperación de la Función , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factor de Transcripción AP-1/metabolismo , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Endocrinology ; 158(6): 1875-1885, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28430983

RESUMEN

The role of estrogen receptor-α (ERα) signaling in the vasculature of females has been described under different experimental conditions and our group recently reported that lack of endothelial cell (EC) ERα in female mice fed a Western diet (WD) results in amelioration of vascular stiffness. Conversely, the role of ERα in the male vasculature in this setting has not been explored. In conditions of overnutrition and insulin resistance, augmented arterial stiffness, endothelial dysfunction, and arterial remodeling contribute to the development of cardiovascular disease. Here, we used a rodent model of decreased ERα expression in ECs [endothelial cell estrogen receptor-α knockout (EC-ERαKO)] to test the hypothesis that, similar to our findings in females, loss of ERα signaling in the endothelium of insulin-resistant males would result in decreased arterial stiffness. EC-ERαKO male mice and same-sex littermates were fed a WD (high in fructose and fat) for 20 weeks and then assessed for vascular function and stiffness. EC-ERαKO mice were heavier than littermates but exhibited decreased vascular stiffness without differences in endothelial-dependent vasodilatory responses. Mesenteric arteries from EC-ERαKO mice had significantly increased diameters, wall cross-sectional areas, and mean wall thicknesses, indicative of outward hypertrophic remodeling. This remodeling paralleled an increased vessel wall content of collagen and elastin, inhibition of matrix metalloproteinase activation and a decrease of the incremental modulus of elasticity. In addition, internal elastic lamina fenestrae were more abundant in the EC-ERαKO mice. In conclusion, loss of endothelial ERα reduces vascular stiffness in male mice fed a WD with an associated outward hypertrophic remodeling of resistance arteries.


Asunto(s)
Dieta Occidental/efectos adversos , Receptor alfa de Estrógeno/genética , Remodelación Vascular/genética , Rigidez Vascular/genética , Animales , Células Cultivadas , Femenino , Masculino , Arterias Mesentéricas/fisiopatología , Ratones , Ratones Noqueados , Vasodilatación/genética
19.
J Environ Manage ; 196: 518-526, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28347970

RESUMEN

One of the main challenges in industrial wastewater treatment and recovery is the removal of sulfate, which usually coexists with Ca2+ and Mg2+. The effect of Mg2+ on sulfate removal by ettringite precipitation was investigated, and the process was optimized in the absence and presence of Mg2+. In the absence of Mg2+, the optimum conditions with sulfate removal of 99.7% were obtained at calcium-to-sulfate ratio of 3.20, aluminum-to-sulfate ratio of 1.25 and pH of 11.3 using response surface methodology. In the presence of Mg2+, sulfate removal efficiency decreased with increasing Mg2+ concentration, and the inhibitory effect of Mg2+ matched the competitive inhibition Monod model with half maximum inhibition concentration of 57.4 mmol/L. X-ray diffraction and Fourier transform infrared spectroscopy analyses of precipitates revealed that ettringite was converted to hydrotalcite-type (HT) compound in the presence of Mg2+. The morphology of precipitates was transformed from prismatic crystals to stacked layered crystals, which confirmed that Mg2+ competes with Ca2+ for Al3+ to form HT compound. A two-stage process was designed with Mg2+ removal before ettringite precipitation to eliminate the inhibitory effect, and is potential to realize sludge recovery at the same time of effective removal of sulfate and hardness.


Asunto(s)
Magnesio , Sulfatos , Aguas Residuales , Precipitación Química , Concentración de Iones de Hidrógeno , Minerales , Difracción de Rayos X
20.
Wei Sheng Yan Jiu ; 46(1): 52-56, 2017 Jan.
Artículo en Chino | MEDLINE | ID: mdl-29903152

RESUMEN

OBJECTIVE: To evaluate the capacity of national laboratories for determination of benzene in drinking water using Proficiency Testing Program. METHODS: The preparation methods of the Secondary Standard Materials were used as the reference for the sample preparation in this Proficiency Testing Program. The homogeneity and stability of the samples were tested by Single Factor Analysis of Variance( ANOVA) and Linear Regression. The results provided by participant laboratories were analyzed by robust statistics and assessed using the Z-score. RESULTS: The total of 242 laboratories throughout the country participated in the Proficiency Testing Program. The total of 220 laboratories, or 90. 9% of total participating laboratories, obtained satisfactory results. Results provided by 9 laboratories, or 3. 7% of total participating laboratories, were found to suggest doubts in their capacities. Finally, there were 13 laboratories, constituting 5. 4% of total participating laboratories, with results that were found to be outliers. CONCLUSION: The capacity of national laboratories for determination of benzene in drinking water has been ranked as satisfactory according to statistical analysis of the Proficiency Testing Program results. Only a small portion of the participants require further improvement in their capacities.


Asunto(s)
Benceno/análisis , Agua Potable/análisis , Ensayos de Aptitud de Laboratorios , Humanos , Laboratorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...