Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(21)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114037

RESUMEN

For time-critical precise applications, one popular technology is the real-time precise point positioning (PPP). In recent years, there has been a rapid development in the BeiDou Navigation Satellite System (BDS), and the constellation of global BDS (BDS-3) has been fully deployed. In addition to the regional BDS (BDS-2) constellation, the real-time stream CLK93 has started to support the BDS-3 constellation, indicating that the real-time PPP processing involving BDS-3 observations is feasible. In this study, the global positioning performance of real-time PPP with BDS-3/BDS-2 observations is initially evaluated using the datasets from 147 stations. In the east, north and upward directions, positioning accuracy of 1.8, 1.2 and 2.5 cm in the static mode, and of 6.7, 5.1 and 10.4 cm in the kinematic mode can be achieved for the BDS-3/BDS-2 real-time PPP, respectively, while the corresponding convergence time with a threshold of 10 cm is 32.9, 23.7 and 32.8 min, and 66.9, 42.9 and 69.1 min in the two modes in the three directions, respectively. To complete this, the availability of BDS-3/BDS-2 constellations, the quality of BDS-3/BDS-2 real-time precise satellite products, and the BDS-3/BDS-2 post-processed PPP solutions are also analyzed. For comparison, the results for the GPS are also presented.

2.
Sci Rep ; 9(1): 15181, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31645663

RESUMEN

This paper presents a new sea surface height (SSH) estimation using GNSS reflectometry (GNSS-R). It is a cost-effective remote sensing technique and owns long-term stability besides high temporal and spatial resolution. Initial in-situ SSH estimates are first produced by using the SNR data of BDS (L1, L5, L7), GPS (L1, L2, L5), and GLONASS (L1, L2), of MAYG station, which is located in Mayotte, France near the Indian Ocean. The results of observation data over a period of seven days showed that the root mean square error (RMSE) of SSH estimation is about 32 cm and the correlation coefficient is about 0.83. The tidal waveform is reconstructed based on the initial SSH estimates by utilizing the wavelet de-noising technique. By comparing the tide gauge measurements with the reconstructed tidal waveform at SSH estimation instants, the SSH estimation errors can be obtained. The results demonstrate that the correlation coefficient and RMSE of the wavelet de-noising based SSH estimation is 0.95 and 19 cm, respectively. Compared with the initial estimation results, the correlation coefficient is improved by about 14.5%, while the RMSE is reduced by 40.6%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...