Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(3): 404-420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424271

RESUMEN

γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Citoesqueleto/metabolismo
2.
Elife ; 112022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35787744

RESUMEN

The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole-independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152, or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus-end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement.


Asunto(s)
Centriolos , Dineínas , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Dineínas/metabolismo , Interfase , Microtúbulos/metabolismo
3.
Biochem Biophys Res Commun ; 519(4): 754-760, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31547988

RESUMEN

Wnt signaling is essential for the maintenance of adult stem cells and its aberrant activation is a stimulator of carcinogenesis. The transmembrane protein, Wntless, is an essential Wnt signaling component through regulating the secretion of Wnt ligands. Here, we generated a mouse model with specific Wntless knockout in intestinal epithelium to study its function in the intestinal epithelium. Wntless knockout exhibits no obvious defects in mice but significantly disrupted proliferation and differentiation of small intestinal organoids. We also discovered that these deficiencies could be partially rescued by Wnt3a supplement but not Wnt9b. To further investigate the role of Wntless in tumorigenesis, APC-deficient spontaneous intestinal tumors and chemical induced colorectal cancer mouse models were employed. To our surprise, intestinal epithelium-specific knockout of Wntless did not cause significant differences in tumor number and size. In summary, our data demonstrated that epithelial Wntless was required for the growth and differentiation of small intestinal organoids but not in live animals, suggesting the other tissues, such as mesenchymal tissue, play critical role for Wnt secretion in both intestinal homeostasis as well as tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/genética , Receptores Acoplados a Proteínas G/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Intestinales/metabolismo , Ratones Noqueados , Ratones Transgénicos , Organoides/metabolismo , Organoides/patología , Receptores Acoplados a Proteínas G/metabolismo
4.
Sci Rep ; 5: 17517, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620761

RESUMEN

The CRISPR-Cas RNA-guided system has versatile uses in many organisms and allows modification of multiple target sites simultaneously. Generating novel genetically modified mouse and rat models is one valuable application of this system. Through the injection of Cas9 protein instead of mRNA into embryos, we observed fewer off-target effects of Cas9 and increased point mutation knock-in efficiency. Large genomic DNA fragment (up to 95 kb) deletion mice were generated for in vivo study of lncRNAs and gene clusters. Site-specific insertion of a 2.7 kb CreERT2 cassette into the mouse Nfatc1 locus allowed labeling and tracing of hair follicle stem cells. In addition, we combined the Cre-Loxp system with a gene-trap strategy to insert a GFP reporter in the reverse orientation into the rat Lgr5 locus, which was later inverted by Cre-mediated recombination, yielding a conditional knockout/reporter strategy suitable for mosaic mutation analysis.


Asunto(s)
Sistemas CRISPR-Cas , Embrión de Mamíferos/metabolismo , Eliminación de Gen , Técnicas de Sustitución del Gen/métodos , Sitios Genéticos , Cigoto/metabolismo , Animales , Embrión de Mamíferos/citología , Ratones , Ratas , Cigoto/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...