Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2310300, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937997

RESUMEN

Nano air channel transistors (NACTs) provide numerous advantages over traditional silicon devices, including faster switching speeds, higher operating frequencies, and enhanced radiation hardness attributable to the ballistic transport of electrons. In the development of field-emission-based integrated circuits, low-power consumption rectifying nano air channel diodes (NACDs) play a crucial role. However, achieving rectification characteristics in NACDs is challenging due to their structural and material symmetry. This paper proposes a vertical GaN NACD with a consistent nano air channel fabricated using IC-compatible processes. The GaN NACD exhibits an exceptionally low turn-on voltage of 0.3 V while delivering a high output current of 5.02 mA at 3 V. Notably, it demonstrates a high rectification ratio of up to 2.2 × 105, attributing to significant work function disparities within the GaN-Au structure, coupled with the reduction of Au surface roughness to minimize reverse current. Furthermore, the junction-free structure and superior material properties of GaN enable the NACD to be suitable for use in radiation-rich environments. With its potential as a fundamental component of ultrafast and ultrahigh-frequency integrated circuits, this intriguing and cost-effective rectifying diode is anticipated to garner widespread interest within the electronics community.

2.
J Phys Chem A ; 128(11): 2130-2135, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38457480

RESUMEN

The defect-based single-photon emitters (SPEs) in gallium nitride (GaN) have attracted considerable research interest due to their high emission rate, narrow line width, and room-temperature operation. However, the quenching effect greatly restricts the applications of these SPEs, and the origin of the quenching mechanism is still unclear. Here, based on systematic ab initio calculations, we reveal a possible quenching mechanism originating from the transformation between two different structures of the defect-pair NGaVN in wurtzite GaN. Our results indicate that the defect-pair NGaVN possesses two stable detect-structures A and B, where the structure B has a small zero phonon line (ZPL) and long lifetime. The transformation barrier from structures A to B is only 0.097 eV. Thus, structure A can easily transform to structure B under laser illumination due to thermal fluctuations, causing a quenching phenomenon. Our work also predicts that the barrier energy between defect structures A and B could be effectively adjusted through tuning the triaxial compressive strain of the crystal structure. This provides an effective method to suppress the quenching effect of defect-pair NGaVN in GaN, paving the way for practical applications of SPEs.

3.
Opt Express ; 31(24): 40646-40657, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38041359

RESUMEN

With the rapid expansion of the Internet of Things (IoT), ensuring the security of personal and group information has become increasingly crucial. However, conventional optical scattering physical unclonable function (OS-PUF) faces challenges due to its linear scattering behavior. In this article, we propose a non-linear OS-PUF (NOS-PUF) that integrates electro-optic materials. By leveraging random refractive index fluctuations generated by the NOS-PUF, we mitigate modeling attacks based on the OS-PUF and bolster the overall security of the authentication process. Moreover, we introduce a novel modeling attack methodology based on scattering invariant modes (SIMs) that poses a significant threat to conventional OS-PUF and NOS-PUF authentication systems. Through extensive simulations, we demonstrate that our NOS-PUF achieves a remarkably lower false accept rate for modeling attacks utilizing SIMs, surpassing the entropy limit imposed by the Gabor filtering algorithm by more than five orders of magnitude. These results highlight the heightened security and increased information entropy offered by the proposed NOS-PUF, making it particularly suitable for applications demanding robust and high-security authentication measures.

4.
Opt Express ; 31(21): 34800-34816, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859228

RESUMEN

Photonics-assisted millimeter-wave (MMW) wireless communications are advancing rapidly driven by the escalating congestion in the lower-band spectrum and the growing demand for higher data rates. Concurrently, Kramers-Kronig (KK) receivers provide an economical solution ideally suited for cost-sensitive deployment and application. However, the conventional KK receiver is subject to performance degradation due to the nonlinearity and memory effects introduced by practical electronic devices. In this work, the performance degradation of the conventional KK receiver is investigated and quantitatively simulated, showing that the KK receiver exhibits greater sensitivity to nonlinearity and memory effects compared to the conventional coherent receiver. To enhance the performance of KK receivers deployed in MMW communication systems, we propose a modified KK receiver employing memory polynomial compensation, namely MP-KK receiver, capable of effectively compensating memory effects whilst simultaneously addressing nonlinearity. Crucially, the memory polynomial model is employed prior to the KK algorithm to prevent further signal degradation caused by the nonlinear operator in the KK algorithm in the scenario of photonics-assisted MMW wireless communication based on the KK receiver. For verification, we present a 95 GHz W-band MMW wireless transmission demonstration with 20 Gb/s QPSK and 40 Gb/s 16-QAM signals. The experimental results indicate that the MP-KK receiver can achieve more than 3.5 dB improvement in EVM and 71.25% reduction in BER compared to the conventional approaches.

5.
Adv Sci (Weinh) ; 10(17): e2206385, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078799

RESUMEN

Nanoscale air channel transistors (NACTs) have received significant attention due to their remarkable high-frequency performance and high switching speed, which is enabled by the ballistic transport of electrons in sub-100 nm air channels. Despite these advantages, NACTs are still limited by low currents and instability compared to solid-state devices. GaN, with its low electron affinity, strong thermal and chemical stability, and high breakdown electric field, presents an appealing candidate as a field emission material. Here, a vertical GaN nanoscale air channel diode (NACD) with a 50 nm air channel is reported, fabricated by low-cost IC-compatible manufacturing technologies on a 2-inch sapphire wafer. The device boasts a record field emission current of 11 mA at 10 V in the air and exhibits outstanding stability during cyclic, long-term, and pulsed voltage testing. Additionally, it displays fast switching characteristics and good repeatability with a response time of fewer than 10 ns. Moreover, the temperature-dependent performance of the device can guide the design of GaN NACTs for applications in extreme conditions. The research holds great promise for large current NACTs and will speed up their practical implementation.

6.
Nanotechnology ; 34(22)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36827696

RESUMEN

Single-photon emitters (SPEs) are attractive as integrated platforms for quantum applications in technologically mature wide-bandgap semiconductors since their stable operation at room temperature or even at high temperatures. In this study, we systematically studied the temperature dependence of the SPE in AlGaN micropillar by experiment. The photoluminescence (PL) spectrum, PL intensity, radiative lifetime and second-order autocorrelation function measurements are investigated over the temperature range from 303 to 373 K. The point defects of AlGaN show strong zero phonon line in the wavelength range of 800-900 nm and highly antibunched photon emission even up to 373 K. Our study reveals a possible mechanism for linewidth broadening in AlGaN SPE at high temperatures. This indicates a possible key for on-chip integration applications based on this material operating at high temperatures.

7.
ACS Appl Mater Interfaces ; 14(47): 53183-53192, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36379040

RESUMEN

Low-cost and large-area chiral metamaterials (CMs) are highly desirable for practical applications in chiral biosensors, nanophotonic chiral emitters, and beyond. A promising fabrication method takes advantage of self-assembled colloidal particles, onto which metal patches with defined orientation are created using glancing angle deposition (GLAD). However, using this method to make uniform and well-defined CMs over macroscopic areas is challenging. Here, we fabricate a uniform large-area colloidal particle array by interface-mediated self-assembly and precisely control the structural handedness of chiral plasmonic shells (CPSs) using GLAD. Strong chiroptical signals arise from twisted currents at the main, corner, and edge of CPSs, allowing a balance between strong chiroptical and high transmittance properties. Our shell-like chiral geometry shows excellent sensor performance in detecting chiral molecules due to the formation of uniform superchiral fields. Systematic investigations optimize the interplay between peak and null point resonances in different CPSs and result in a record consistency chiral sensor parameter U, i.e., 3.77 for null points and 0.0867 for peaks, which are about 54 and 1.257 times larger than the highest value (0.068) of previously reported CMs. The geometrical chirality, surface plasmonic resonance, chiral surface lattice resonance, and chiral sensor performance evidence the chiroptical effect and the excellent chiral sensor performance.

8.
Nanoscale ; 14(48): 18115-18122, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36449012

RESUMEN

Point defects in wide bandgap III-nitride semiconductors have been recently reported to be one kind of the most promising near-infrared (NIR) quantum emitters operating at room temperature (RT). But the identification of the point defect species and the energy level structures as well as the transition dynamics remain unclear. Here, the photophysical properties of single-photon emission from point defects in AlGaN films are investigated in detail. According to the first-principles calculations, a three-level model was established to explain the transition dynamics of the quantum emitters. An anti-site nitrogen vacancy complex (VNNGa) was demonstrated to be the most likely origin of the measured emitter since the calculated zero-phonon line (ZPL) and the lifetime of VNNGa in the AlGaN film coincide well with the experimental results. Our results provide new insights into the optical properties and energy level structures of quantum emission from point defects in AlGaN films at RT and establish the foundation for future AlGaN-based on-chip quantum technologies.

9.
Adv Mater ; 34(19): e2109765, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35297518

RESUMEN

Deep-ultraviolet (DUV) solar-blind communication (SBC) shows distinct advantages of non-line-of-sight propagation and background noise negligibility over conventional visible-light communication. AlGaN-based DUV micro-light-emitting diodes (µ-LEDs) are an excellent candidate for a DUV-SBC light source due to their small size, low power consumption, and high modulation bandwidth. A long-haul DUV-SBC system requires the light source exhibiting high output power, high modulation bandwidth, and high rate, simultaneously. Such a device is rarely reported. A parallel-arrayed planar (PAP) approach is here proposed to satisfy those requirements. By reducing the dimensions of the active emission mesa to micrometer scale, DUV µ-LEDs with ultrahigh power density are created due to their homogeneous injection current and enhanced planar isotropic light emission. Interconnected PAP µ-LEDs with a diameter of 25 µm are produced. This device has an output power of 83.5 mW with a density of 405 W cm-2 at 230 mA, a wall-plug efficiency (WPE) of 4.7% at 155 mA, and a high -3 dB modulation bandwidth of 380 MHz. The remarkable high output power and efficiency make those devices a reliable platform to develop high-modulation-bandwidth wireless communication and to meet the requirements for bio-elimination.

10.
ACS Appl Mater Interfaces ; 14(4): 5785-5796, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35044155

RESUMEN

Optical physical unclonable function (PUF) is one of the most promising hardware security solutions, which has been proven to be resistant to machine learning attacks. However, the disordered structures of the traditional optical PUFs are usually deterministic once they are manufactured and therefore exhibit fixed challenge-response behaviors. Herein, a reconfigurable PUF (R-PUF) is proposed and demonstrated by using the reversible phase transition behavior of VO2 nanocrystals combined with TiO2 disordered nanoparticles. Both the simulation and experiment results show that the near-infrared laser speckle pattern of the R-PUF can be almost completely altered after the phase transition of VO2 nanocrystals, resulting in a reconfigurable and reproducible optical response. The similarity of the response speckles shows an obvious hysteresis loop during the rise and drop of temperature, providing a simple way to regulate and control the response behaviors of the R-PUF. More importantly, the hysteretic characteristic provides a new dimension to describe the challenge-response behavior of the R-PUF besides the laser speckle, providing an effective way to improve the security and encoding capacity of the optical PUFs. The proposed R-PUF can be employed as a promising security primitive for high robustness and high-security authentication and encryption.

11.
Micromachines (Basel) ; 14(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36677149

RESUMEN

The Si- and InP-based APDs as the most important weak light semiconductor photodetectors to have achieved commercial success and are widely used in irradiation environments. Investigating the influencing mechanism of neutron irradiation on the above two types of APDs is of scientific and practical importance. In this paper, the dark current and gain characteristics of Si- and InP-based APDs around breakdown voltage were analyzed in detail before and after irradiation. The increase of dark current and the decrease of gain were observed for both the neutron irradiated Si- and InP-based APDs. Generation centers induced by neutrons are responsible for the increased dark current. The decrease of gain can be attributed to the increase of multiplied dark current and the change of electric field distribution in APD. The Si-based APD exhibits soft breakdown with the breakdown voltage reduced by ~8 V under the neutron fluence of 1.0 × 1012 cm-2, while the soft breakdown occurs along with a small change of breakdown voltage of ~1.5 V under the neutron fluence of 1.0 × 1013 cm-2 for InP-based APD. The difference in the change of breakdown voltage probably occurs because the Si-based APD uses p-doped Si as the multiplication layer, in which the neutron induced carrier removing effect cannot be ignored to keep the electric field distribution away from the optimal state. Therefore, using an intrinsic multiplication layer in APD is helpful to improve the neutron radiation resistance. The findings here are not only useful for the radiation hardened design of APD, but also deepen the understanding of irradiation mechanism.

12.
Nanoscale ; 12(16): 9162-9170, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32297606

RESUMEN

Large-area and high-performance chiral metamaterials are highly desired for practical applications, such as controlling the polarization state of an electromagnetic wave and enhancing the sensor sensitivity of chiral molecules. In this work, cavity-enhanced chiral metamaterials (CECMs) with a large area (1 cm2) have been fabricated by the convenient angle-dependent material deposition technique. The optimal chiral signal (g factor) resonance in the visible waveband can reach about 0.94 with a figure of merit (FOM) of about 5.2, which is about ten times larger than that of chiral metamaterials (CMs) without a cavity (i.e., a g factor of 0.094 with the FOM of about 1.12). Both the theoretical and experimental results demonstrate that the circular conversion components from the anisotropic geometry of CMs play a crucial role in the final chiroptical effect of CECM, which together with the cavity effect enhance both the chiroptical resonance intensity and FOM. Choosing the appropriate deposition parameters can effectively modify the geometric anisotropy of CM and thus the chiroptical effect of CECM. The geometric nanoscale morphology, electromagnetic properties and sensor performance were investigated carefully in this work. The fabricated CECM working in the visible waveband together with the cavity-enhanced scheme provides a competitive candidate for enhancing the performance and the practical applications of CMs.

13.
Opt Lett ; 45(6): 1330-1333, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32163957

RESUMEN

In this Letter, we report a giant and robust asymmetric chiroptical effect (ACOE) in the chiral medium filled golden slit grating on glass substrate (CMGSG-GS). This ACOE comes from the influence of interface asymmetry on the electromagnetic cross-coupling in the CMGSG-GS, and it is inherently different than that reported in the Faraday medium and the planar anisotropic chiral metamaterials. Both the polarization eigenstate and the transmission matrix are highly dependent on the metal structure used in the CMGSG-GS. The polarization eigenstates of the CMGSG-GS are two co-rotating elliptical states with ellipticity of nearly 0, and they remain mostly unchanged for opposite directions. The transmission matrices of opposite directions are normal matrices, which do not show any symmetric law although the geometry of the CMGSG-GS owns a high rotational symmetry. The reported ACOE gives a measurable physical parameter to reveal the events happening at interface.

14.
Opt Express ; 24(2): A92-103, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26832602

RESUMEN

Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...