Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 11: 1477604, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39439670

RESUMEN

Introduction: This study reports a patient who developed a secondary renal artery aneurysm (RAA) after occlusion of the main renal artery. Methods: A 25-year-old woman was hospitalized due to an enlarged renal artery aneurysm (RAA). Computed tomography angiography revealed a 2.2 mm left renal aneurysm and the absence of the left renal artery trunk, with collateral blood supply from the branch arteries of the aorta. The left kidney function remained normal, allowing successful aneurysm embolization. Three years after embolization, the patient's hypertension improved and became more manageable. Conclusion: Compensation through other abdominal aorta branches after renal artery trunk occlusion is rare, and these branches may also lead to the development of aneurysms. Regular monitoring of these patients is essential.

2.
Mater Horiz ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264270

RESUMEN

Efficient enrichment and accurate diagnosis of cancer cells from biological samples can guide effective treatment strategies. However, the accessibility and accuracy of rapid identification of tumor cells have been hampered due to the overlap of white blood cells (WBCs) and cancer cells in size. Therefore, a diagnosis system for the identification of tumor cells using reliable surface-enhanced Raman spectroscopy (SERS) bioprobes assisted with high-efficiency microfluidic chips for rapid enrichment of cancer cells was developed. According to this, a homogeneous flower-like Cu2O@Ag composite with high SERS performance was constructed. It showed a favorable spectral stability of 5.81% and can detect trace alizarin red (10-9 mol L-1). Finite-difference time-domain (FDTD) simulation of Cu2O, Ag and Cu2O@Ag, decreased the fluorescence lifetime of methylene blue after adsorption on Cu2O@Ag, and surface defects of Cu2O observed using a spherical aberration-corrected transmission electron microscope (AC-TEM) demonstrated that the combined effects of electromagnetic enhancement and promoted charge transfer endowed the Cu2O@Ag with good SERS activity. In addition, the modulation of the absorption properties of flower-like Cu2O@Ag composites significantly improved electromagnetic enhancement and charge transfer effects at 532 nm, providing a reliable basis for the label-free SERS detection. After the cancer cells in blood were separated by a spiral inertial microfluidic chip (purity >80%), machine learning-assisted linear discriminant analysis (LDA) successfully distinguished three types of cancer cells and WBCs with high accuracy (>90%). In conclusion, this study provides a profound reference for the rational design of SERS probes and the efficient diagnosis of malignant tumors.

3.
Sci Rep ; 14(1): 20643, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232177

RESUMEN

To reduce the number of casualties in explosion accidents, blast-resistant shelters can be used to protect personnel in high-risk areas of petrochemical processing plants. In this work, the deformation behaviours of uncoated and polyurea-coated blast-resistant plates were studied through gas explosion tests. An ANSYS/LS-DYNA model of a polyurea-coated shelter was established, and the dynamic responses of the shelter under various explosion loads were analysed. A series of fuel-air explosion tests were carried out to investigate the explosion resistance of the full-scale shelter. The results showed that compared with the uncoated blast-resistant plate, the deformation of the polyurea-coated blast-resistant plate was significantly reduced. The overall deformation of the shelter was the central depression of the wall and the inward bending of the frame. The damage effect of a typical high-overpressure, low-duration load was greater than that of typical low-overpressure, long-duration load. The shelter remained intact under three repeated explosive loads, with cracks appearing on the inner wall but no collapse or debris splashing. The shock wave attenuation rate of the shelter reached over 90%, which could significantly reduce the number of indoor casualties.

4.
Innovation (Camb) ; 5(5): 100690, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39301119

RESUMEN

Finding water resources is a crucial objective of lunar missions. However, both hydroxyl (OH) and natural water (H2O) have been reported to be scarce on the Moon. We propose a potential method for obtaining water on the Moon through H2O formation via endogenous reactions in lunar regolith (LR), specifically through the reaction FeO/Fe2O3 + H → Fe + H2O. This process is demonstrated using LR samples brought back by the Chang'E-5 mission. FeO and Fe2O3 are lunar minerals containing Fe oxides. Hydrogen (H) retained in lunar minerals from the solar wind can be used to produce water. The results of this study reveal that 51-76 mg of H2O can be generated from 1 g of LR after melting at temperatures above 1,200 K. This amount is ∼10,000 times the naturally occurring OH and H2O on the Moon. Among the five primary minerals in LR returned by the Chang'E-5 mission, FeTiO3 ilmenite contains the highest amount of H, owing to its unique lattice structure with sub-nanometer tunnels. For the first time, in situ heating experiments using a transmission electron microscope reveal the concurrent formation of Fe crystals and H2O bubbles. Electron irradiation promotes the endogenous redox reaction, which is helpful for understanding the distribution of OH on the Moon. Our findings suggest that the hydrogen retained in LR is a significant resource for obtaining H2O on the Moon, which is helpful for establishing a scientific research station on the Moon.

5.
Materials (Basel) ; 17(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893839

RESUMEN

This paper presents a study on the mechanical properties of cement-stabilized steel-slag-based materials under freeze-thaw cycles for a highway project in Xinjiang. Using 3D scanning technology the specimen model conforming to the real steel slag shape was established. The objectives of the study are as follows: to explore the sensitivity between the macro- and micro-parameters of the specimen and to establish a non-linear regression equation; and to study the changes in mechanical properties of materials under freeze-thaw cycles, fatigue loading, and coupled freeze-thaw cycle-fatigue loading. The results show that there are three stages of compression damage of the specimen, namely, linear elasticity, peak plasticity, and post-peak decline. Maximum contact forces between cracks and particles occur mainly in the shear zone region within the specimen. The compression damage of the specimen is a mixed tensile-shear damage dominated by shear damage. When freeze-thaw cycles or fatigue loads are applied alone, the flexural strength and fatigue life of the specimens show a linear relationship of decline. The decrease in flexural modulus at low stress is divided into the following: a period of rapid decline, a relatively smooth period, and a period of fracture, with a tendency to change towards linear decay with increasing stress. In the case of freeze-thaw-fatigue coupling, the flexural modulus of the specimen decreases drastically by about 50% in the first 2 years, and then enters a period of steady decrease in flexural modulus in the 3rd-5th years.

6.
Nano Lett ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781119

RESUMEN

Although transition-metal nitrides have been widely applied for several decades, experimental investigations of their high-resolution electronic band structures are rare due to the lack of high-quality single-crystalline samples. Here, we report on the first momentum-resolved electronic band structures of titanium nitride (TiN) films, which are remarkable nitride superconductors. The measurements of the crystal structures and electrical transport properties confirmed the high quality of these films. More importantly, from a combination of high-resolution angle-resolved photoelectron spectroscopy and first-principles calculations, the extracted Coulomb interaction strength of TiN films can be as large as 8.5 eV, whereas resonant photoemission spectroscopy yields a value of 6.26 eV. These large values of Coulomb interaction strength indicate that superconducting TiN is a strongly correlated system. Our results uncover the unexpected electronic correlations in transition-metal nitrides, potentially providing a perspective not only to understand their emergent quantum states but also to develop their applications in quantum devices.

7.
Nano Lett ; 24(23): 7108-7115, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38722094

RESUMEN

Diamond is considered the most promising next-generation semiconductor material due to its excellent physical characteristics. It has been more than three decades since the discovery of a special structure named n-diamond. However, despite extensive efforts, its crystallographic structure and properties are still unclear. Here, we show that subdisordered structures in diamond provide an explanation for the structural feature of n-diamond. Monocrystalline diamond with subdisordered structures is synthesized via the chemical vapor deposition method. Atomic-resolution scanning transmission electron microscopy characterizations combined with the picometer-precision peak finder technology and diffraction simulations reveal that picometer-scale shifts of atoms within cells of diamond govern the subdisordered structures. First-principles calculations indicate that the bandgap of diamond decreases rapidly with increasing shifting distance, in accordance with experimental results. These findings clarify the crystallographic structure and electronic properties of n-diamond and provide new insights into the bandgap adjustment in diamond.

8.
Plant Cell ; 36(8): 2873-2892, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38723594

RESUMEN

Grain size and weight are crucial yield-related traits in rice (Oryza sativa). Although certain key genes associated with rice grain size and weight have been successfully cloned, the molecular mechanisms underlying grain size and weight regulation remain elusive. Here, we identified a molecular pathway regulating grain size and weight in rice involving the MPS ONE BINDER KINASE ACTIVATOR-LIKE 1A-SERINE/THREONINE-PROTEIN KINASE 38-CYCLIN C (OsMOB1A-OsSTK38-OsCycC) module. OsSTK38 is a nuclear Dbf2-related kinase that positively regulates grain size and weight by coordinating cell proliferation and expansion in the spikelet hull. OsMOB1A interacts with and enhances the autophosphorylation of OsSTK38. Specifically, the critical role of the OsSTK38 S322 site in its kinase activity is highlighted. Furthermore, OsCycC, a component of the Mediator complex, was identified as a substrate of OsSTK38, with enhancement by OsMOB1A. Notably, OsSTK38 phosphorylates the T33 site of OsCycC. The phosphorylation of OsCycC by OsSTK38 influenced its interaction with the transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (OsKNAT7). Genetic analysis confirmed that OsMOB1A, OsSTK38, and OsCycC function in a common pathway to regulate grain size and weight. Taken together, our findings revealed a connection between the Hippo signaling pathway and the cyclin-dependent kinase module in eukaryotes. Moreover, they provide insights into the molecular mechanisms linked to yield-related traits and propose innovative breeding strategies for high-yielding varieties.


Asunto(s)
Ciclina C , Grano Comestible , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/enzimología , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ciclina C/metabolismo , Ciclina C/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Plantas Modificadas Genéticamente
9.
Food Chem ; 447: 138997, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38513493

RESUMEN

Herein we developed a multicolor lateral flow immunoassay (LFIA) test strip for rapid and simultaneous quantitative detection of aflatoxin B1 (AFB1) and zearalenone (ZEN). Three differently colored aggregation-induced emission nanoparticles (AIENPs) were designed as LFIA signal tags, with red and green AIENPs for targeting AFB1 and ZEN at the test line, and yellow AIENPs for indicating the validity of the test strip at the control (C) line. After surface functionalization with antibodies, the developed AIENP-based multicolor LFIA allows simultaneous and accurate quantification of AFB1 and ZEN using an independent C-line assisted ratiometric signal output strategy. The detection limits of AFB1 and ZEN were 6.12 and 26 pg/mL, respectively. The potential of this method for real-world applications was well demonstrated in corn and wheat. Overall, this multicolor LFIA shows great potential for field screening of multiple mycotoxins and can be extended to rapid and simultaneous monitoring of other small molecule targets.


Asunto(s)
Nanopartículas del Metal , Micotoxinas , Zearalenona , Zearalenona/análisis , Aflatoxina B1/análisis , Anticuerpos Monoclonales , Micotoxinas/análisis , Inmunoensayo/métodos , Límite de Detección , Contaminación de Alimentos/análisis
10.
Small Methods ; : e2301288, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054606

RESUMEN

Gallium oxide (Ga2 O3 ) usually fractures in the brittle form, and achieving large plastic deformability to avoid catastrophic failure is in high demand. Here, ε-Ga2 O3 thin films with columnar crystals and partial unoccupied Ga sites are synthesized, and it is demonstrated that the ε-Ga2 O3 at the submicron scale can be compressed to an ultra-large plastic strain of 48.5% without cracking. The compressive behavior and related mechanisms are investigated by in situ transmission electron microscope nanomechanical testing combined with atomic-resolution characterizations. The serrated plastic flow and large strain burst are two major deformation forms of ε-Ga2 O3 during compression, which are attributed to the dislocation nucleation and avalanches, formation of new grains, and amorphization. The ultra-large compressive plasticity of ε-Ga2 O3 thin films at the submicron scale can inspire new applications of Ga2 O3 in micro- or nano- electronic and optoelectronic devices, especially those that require impact resistance during processing or service.

11.
Environ Sci Technol ; 57(49): 20905-20914, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010209

RESUMEN

NOx storage-reduction (NSR), a promising approach for removing NOx pollutants from diesel vehicles, remains elusive to cope with the increasingly lower exhaust temperatures (especially below 250 °C). Here, we develop a conceptual electrified NSR strategy, where electricity with a low input power (0.5-4 W) is applied to conductive Pt and K co-supported antimony-doped tin oxides (Pt-K/ATO), with C3H6 as a reductant. The ignition temperature for 10% NOx conversion is nearly 100 °C lower than that of the traditional thermal counterpart. Furthermore, reducing the power in the fuel-lean period relative to that in the fuel-rich period increases the maximum energy efficiency by 23%. Electrically driven release of lattice oxygen is revealed to play vital roles in multiple steps in NSR, including NO adsorption, desorption, and reduction, for improved NSR activity. This work provides an electrification strategy for developing high-activity NSR catalysis utilizing electricity onboard hybrid vehicles.


Asunto(s)
Contaminantes Atmosféricos , Óxidos de Nitrógeno , Óxidos de Nitrógeno/análisis , Temperatura , Estaño , Antimonio , Óxidos , Emisiones de Vehículos/análisis , Catálisis , Contaminantes Atmosféricos/análisis
12.
New Phytol ; 240(3): 1066-1081, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37574840

RESUMEN

Modifications of plant architecture can increase planting density, regulate photosynthesis, and improve crop yields. Many basic helix-loop-helix (bHLH) transcription factors participate in the brassinosteroid (BR) signaling pathway and are critical for plant architecture morphogenesis in rice. However, the number of identified bHLH genes suitable for improving production value is still limited. In this study, we cloned Lam1, encoding the typical bHLH transcription factor OsbHLH92. OsbHLH92 knockout (KO) lines exhibit erect leaves. Decreases in the number and size of parenchyma cell layers on the adaxial side of the lamina joint in KO lines were the main reason for the decreased leaf angle. Genetic experiments verify that OsBU1 and its homologs are downstream of OsbHLH92, which is involved in the noncanonical RGA1-mediated BR signaling pathway. OsbHLH91, an OsbHLH92 homolog, plays both conserved and differentiated roles relative to OsbHLH92. Notably, OsbHLH92-KO lines show erect leaves without the acquisition of adverse agronomic traits. Moreover, by driving a specific panicle promoter, OsbHLH92 can greatly increase productivity by at least 10%. This study identifies new components of the BR signaling pathway, demonstrates the importance of OsbHLH92 in improving planting density and crop productivity, and broadens our knowledge of typical and atypical bHLH family members in rice.

14.
ACS Omega ; 8(26): 23840-23850, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37426267

RESUMEN

Seven deflagration tests of a propane-air mixture were carried out in a 22.5 m3 large-scale chamber. The effects of initial volume, gas concentration, and initial turbulence intensity on deflagration characteristics were analyzed. The main frequency of the explosion wave was quantitatively determined by the combination of the wavelet transform and energy spectrum analysis. The results show that the explosive overpressure is formed by the discharge of combustion products and secondary combustion, and the effects of turbulence and gas concentration on the explosive overpressure are higher than the initial volume. Under the condition of weak initial turbulence, the main frequency of gas explosion wave is between 32.13 and 48.33 Hz. Under strong initial turbulence conditions, the main frequency of the gas explosion wave increases with the increase of overpressure, and the empirical formula of the relationship between the main frequency and overpressure is summarized, which could provide theoretical support for the design of mechanical metamaterials for oil and gas explosion. Finally, the flame acceleration simulator numerical model was calibrated through tests, and the overpressure simulation values were in good agreement with the experimental data. The leakage, diffusion, and explosion of a liquefied hydrocarbon loading station in a petrochemical enterprise were simulated. The lethal distance and explosion overpressure at key buildings are predicted for different wind speed conditions. The simulation results can provide a technical basis for evaluating personnel injury and building damage.

15.
J Clin Med ; 12(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37109241

RESUMEN

BACKGROUND: How to obtain a donor liver remains an open issue, especially in the choice of minimally invasive donors right hepatectomy versus open donors right hepatectomy (MIDRH versus ODRH). We conducted a meta-analysis to clarify this question. METHODS: A meta-analysis was performed in PubMed, Web of Science, EMBASE, Cochrane Central Register, and ClinicalTrials.gov databases. Baseline characteristics and perioperative outcomes were analyzed. RESULTS: A total of 24 retrospective studies were identified. For MIDRH vs. ODRH, the operative time was longer in the MIDRH group (mean difference [MD] = 30.77 min; p = 0.006). MIDRH resulted in significantly less intraoperative blood loss (MD = -57.86 mL; p < 0.00001), shorter length of stay (MD = -1.22 days; p < 0.00001), lower pulmonary (OR = 0.55; p = 0.002) and wound complications (OR = 0.45; p = 0.0007), lower overall complications (OR = 0.79; p = 0.02), and less self-infused morphine consumption (MD = -0.06 days; 95% CI, -1.16 to -0.05; p = 0.03). In the subgroup analysis, similar results were observed in pure laparoscopic donor right hepatectomy (PLDRH) and the propensity score matching group. In addition, there were no significant differences in post-operation liver injury, bile duct complications, Clavien-Dindo ≥ 3 III, readmission, reoperation, and postoperative transfusion between the MIDRH and ODRH groups. DISCUSSION: We concluded that MIDRH is a safe and feasible alternative to ODRH for living donators, especially in the PLDRH group.

16.
Science ; 379(6637): 1130-1135, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927013

RESUMEN

Intercalated layered materials offer distinctive properties and serve as precursors for important two-dimensional (2D) materials. However, intercalation of non-van der Waals structures, which can expand the family of 2D materials, is difficult. We report a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were respectively mediated by chemical scissors and intercalants, which created a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The removal of terminals in MXenes with metal scissors and then the stitching of 2D carbide nanosheets with atom intercalation leads to the reconstruction of MAX phases and a family of metal-intercalated 2D carbides, both of which may drive advances in fields ranging from energy to printed electronics.

17.
Food Chem ; 412: 135580, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36736185

RESUMEN

Herein, we report a novel aggregation-induced emission nanoparticles (AIENPs)-based immunochromatography assay (ICA) platform to detect ochratoxin A (OTA) using orange-yellow-emitting AIENPs as fluorescent nanoprobes. Immunochromatographic strip is used for the quantitative detection of OTA in crop matrix using AIENPs coupled with anti-OTA ascites. Under optimal conditions, AIENPs-ICA exhibits stronger signal output capacity and higher sensitivity than traditional gold nanoparticles-based ICA. The half-maximal inhibitory concentration is as low as 0.149 ng mL-1, and the limit detection is 0.042 ng mL-1 at 10 % competitive inhibition concentration. The average recovery of AIENPs-ICA ranges from 82.60 % to 113.14 % with the coefficient of variation ranging from 1.26 % to 11.57 %, proving the proposed method possesses good reliability and reproducibility. Moreover, the developed AIENPs-ICA exhibits negligible cross-reactions with other mycotoxins. We believe the presented AIENPs-ICA platform holds promising potential as a powerful tool for on-site detection of OTA and other molecules detection in food samples.


Asunto(s)
Nanopartículas del Metal , Ocratoxinas , Oro/química , Zea mays/química , Reproducibilidad de los Resultados , Cromatografía de Afinidad/métodos , Límite de Detección , Nanopartículas del Metal/química , Ocratoxinas/análisis
18.
Anal Chim Acta ; 1247: 340869, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36781245

RESUMEN

Organic fluorescein dye-embedded fluorescent microspheres (FMs) are currently the most established commercially fluorescent markers, and they have been widely used to improve the sensitivity of immunochromatography assay (ICA). However, these FMs have natural defects, such as the aggregation-caused quenching effect and small Stokes shift, which are not conducive to improving the detection performance of ICA. Herein, two green emitted FMs, namely aggregation-induced emission FMs (AIEFMs) and fluorescein isothiocyanate FMs (FITCFMs), were prepared by swelling the AIE luminogens and FITC dyes into the carboxyl group-modified polystyrene microspheres. The average diameters of AIEFMs and FITCFMs were 350 and 450 nm, respectively. Compared with FITCFMs, the AIEFMs exhibited stronger fluorescence intensity and a larger Stokes shift. These two FMs were used as the labeling markers of ICA for procalcitonin (PCT) detection with the sandwich format. Among them, AIEFM-ICA showed dynamic linear detection of PCT from 7.6 pg mL-1 to 125 ng mL-1 with the limit of detection (LOD) at 3.8 pg mL-1. These values were remarkably superior to those of FITCFM-ICA (linear range from 61 pg mL-1 to 62.5 ng mL-1 and LOD value at 60 pg mL-1). Furthermore, the average recoveries of the intra- and inter-assays of AIEFM-ICA ranged from 86% to 112%, with coefficients of variation ranging from 1.2% to 8.8%, indicating accuracy and precision for PCT quantitative detection. Additionally, the reliability of the developed AIEFM-ICA was further assessed by analyzing 30 real serum samples from systemic inflammatory response by infectious diseases, and the results showed good agreement with the chemiluminescence immunoassay. In conclusion, compared with traditional FITCFMs, green emitted AIEFMs as a novel fluorescent label, exhibits greater potential to enhance the detection performance of the ICA platform.


Asunto(s)
Colorantes , Luminiscencia , Microesferas , Reproducibilidad de los Resultados , Cromatografía de Afinidad/métodos , Fluoresceínas , Inmunoensayo/métodos
19.
Toxins (Basel) ; 15(1)2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36668898

RESUMEN

Lateral flow immunoassay (LFIA) based on fluorescent microbeads has attracted much attention for its use in rapid and accurate food safety monitoring. However, conventional fluorescent microbeads are limited by the aggregation-caused quenching effect of the loaded fluorophores, thus resulting in low signal intensity and insufficient sensitivity of fluorescent LFIA. In this study, a green-emitting fluorophore with an aggregation-induced emission (AIE) characteristic was encapsulated in polymer nanoparticles via an emulsification technique to form ultrabright fluorescent microbeads (denoted as AIEMBs). The prepared AIEMBs were then applied in a competitive LFIA (AIE-LFIA) as signal reporters for the rapid and highly sensitive screening of fumonisin B1 (FB1) in real corn samples. High sensitivity with a detection limit of 0.024 ng/mL for FB1 was achieved by the developed AIE-LFIA. Excellent selectivity, good accuracy, and high reliability of the AIE-LFIA were demonstrated, indicating a promising platform for FB1 screening.


Asunto(s)
Oro , Nanopartículas del Metal , Reproducibilidad de los Resultados , Microesferas , Inmunoensayo/métodos , Límite de Detección
20.
Plant Cell Environ ; 46(2): 363-378, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36444099

RESUMEN

Photosynthesis is a process that uses solar energy to fix CO2 in the air and converts it into sugar, and ultimately powers almost all life activities on the earth. C3 photosynthesis is the most common form of photosynthesis in crops. Current efforts of increasing crop yields in response to growing global food requirement are mostly focused on improving C3 photosynthesis. In this review, we summarized the strategies of C3 photosynthesis improvement in terms of Rubisco properties and photorespiratory limitation. Potential engineered targets include Rubisco subunits and their catalytic sites, Rubisco assembly chaperones, and Rubisco activase. In addition, we reviewed multiple photorespiratory bypasses built by strategies of synthetic biology to reduce the release of CO2 and ammonia and minimize energy consumption by photorespiration. The potential strategies are suggested to enhance C3 photosynthesis and boost crop production.


Asunto(s)
Fenómenos Bioquímicos , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono , Fotosíntesis/fisiología , Productos Agrícolas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...